

Quantification of coastal morphological
characteristics for transect profiles along the

North Sea coast

Institute:

Name: Rijkswaterstaat

Address: Zuiderwagenplein 2

8224 AD Lelystad

Country: The Netherlands

Internship student:

Name: I.M. (Ivo) Naus

Student number: 3947203

Supervisors Rijkswaterstaat:

Ir. R.J.A. (Rinse) Wilmink

Drs. Q.J. (Quirijn) Lodder

Internal UU supervisor:

Dr. T.D. (Timothy) Price

Table of contents

1. Introduction ... 3

2. Making of one complete dataset ... 4

2.1 MorphAn ... 4

2.2 Old data structures to JARKUS format .. 4

2.3 Grid files ... 5

2.4 Changing coastal area numbers & names ... 5

2.5 Converting JARKUS data to a usable data structure ... 10

3. Methods ... 13

3.1 Defining and calculating coastal profile characteristics .. 13

3.1.1 Reference points .. 13

3.1.2 Height points/intersection points .. 14

3.1.3 Widths and Slopes .. 15

3.1.4 Volumes .. 19

3.2 Plotting characteristics .. 23

3.2.1 Overview figures ... 23

3.2.2 Boxplots .. 24

3.2.3 Removing island heads from figures .. 24

3.2.4 Categorization .. 25

4. Analysis of the characteristics ... 30

4.1 Analysis of the overview figures .. 30

4.1.1 Mean slope ... 30

4.1.2 Volume trend .. 32

4.2 Variation of the different slopes (boxplots) .. 32

4.3 Analysis of the categories .. 37

5. Potentials of this dataset ... 39

6. Uncertainties ... 43

6.1 Uncertainties during the calculations.. 43

6.2 Remarkable findings and errors in the database .. 44

7. Concluding remarks ... 46

References ... 47

Appendix .. 48

3

1. Introduction
The effects of climate change, primarily sea level rise, might cause an increase in coastal

maintenance in the future. Nature-Based solutions, also referred to as Building with Nature solutions

(BwN), are implemented to counteract erosion, stabilise coasts and ensure protection from flooding

(Wilmink et al., 2017). Examples of BwN solutions are beach and shoreface nourishments (Wilmink et

al., 2017). This internship project is part of a larger EU Interreg project: Building with Nature. The aim

of BwN is to maintain the coasts using natural forces.

Observations of applied BwN solutions indicate differences in nourishment behaviour along the

North Sea Region (NSR) coasts. Analysing the observed behavioural differences of nourishments with

respect to local coastal dynamics is a key part of the EU Interreg project. The project aims at

generating the crucial knowledge needed for making the sandy coasts of the NSR more adaptable

and resilient to the effects of climate change (Wilmink et al., 2017).

The objective of this internship is to develop a tool to quantify different coastal characteristics. By

using the profile measurement data, gathered by each partner in the EU Interreg project. Also, the

results from this quantification are analysed. Furthermore, the quantification could result in a

classification on coasts along the NSR with comparable characteristics. This information is useful for

Coastal zone managers to compare different behaviour of nourishments.

During this internship a dataset, containing the

historical record of measured coastal cross-sections

along the NSR coasts (Fig. 1), is analysed. Firstly,

the datasets collected by the different partners,

from Belgium, The Netherlands, Germany and

Denmark, were made into 1 set (Chapter 2). There

were several challenges before the data could work

in one set, like changing the numbers used to

identify each coastal area in the region and

converting the data to the same structure.

Morphological profile characteristics are defined

and calculated for the transect profiles of the

complete dataset (Section 3.1). After which the

calculated characteristics are visualised in figures

(Section 3.2). Additionally, the results are

discussed, along with a comparison between different sections of the coast (Chapter 4).

In Chapter 5, potential future analyses which can be done with this dataset are discussed. Finally, the

uncertainties of the results are reviewed and some remarkable findings and errors in the database

are listed (Chapter 6). An overview of the report structure is given in figure 2.

Figure 2: An overview of the structure of the report.

Making of one
dataset

(Chapter 2)

Defining and
calculating

characteristics
(Section 3.1)

Visualising the
results

(Section 3.2)

Analysis of the
characteristics

(Chapter 4)

Potentials of
the dataset
(Chapter 5)

Uncertainties
(Chapter 6)

Figure 1: Overview map of the study area, indicated in

orange are the locations of all the measurement transects.

4

2. Making of one complete dataset
The EU Interreg project: Building with Nature, is a collaboration between different agencies from

Flanders (Belgium), the Netherlands, Lower-Saxony (German state), Schleswig-Holstein (German

state) and Denmark. Each organisation carries out yearly measurements of coastal profiles along

their part of the North Sea coast. This data is stored in different data structures. One of the

objectives of this internship is to analyse the whole North Sea coastal region with the same method.

The first step to accomplish this is to make one complete dataset with all the data in the same data

structure, which is described in this chapter.

2.1 MorphAn
The profile data from the North Sea region can be analysed with MorphAn. MorphAn is an

application developed to do coastal analyses. Rijkswaterstaat uses MorphAn for the morphological

analysis of the Dutch coast. As MorphAn is an open source application, this tool can be used by

everyone.

MorphAn couples profile data, JARKUS files (*.jrk, text file with a certain structure), to certain cross-

shore transects along the coast, of which the location (coordinates) and orientation is described in a

grid file (*.grd). The coupling between transect grid locations and the measured profile data is based

on the coastal area name and number, stated in a coastal area definition file (*.csv).

MorphAn is primarily developed for the analysis of the Dutch coast, consequently it is made to work

with the Dutch data structure, JARKUS files (*.jrk), and transect grid files (*.grd). As the other project

partners use different data structures to save their data, the other data cannot be analysed with

MorphAn. However, the data can be converted to the JARKUS data structure and the grid structure

used by Rijkswaterstaat. To make one usable dataset from all the data, the used coastal area

numbers needed to be changed as well, as otherwise some numbers were used double and therefore

MorphAn would not be able to read some data. Furthermore, the Danish data was combined into

one coastal area for the whole Danish coast, which needed to be split into the original 6 coastal

areas, based on the transect numbers.

2.2 Old data structures to JARKUS format
As each project partner saved the data in a different format, the data must be transformed to the

same data structure to make a complete dataset which can be analysed with similar methods. It has

been determined that all the data will be transformed to a JARKUS structure, used by

Rijkswaterstaat, as MorphAn is compatible with this data structure. The data transformation tool was

developed (Bregman, 2017), which was made to transform the data structure to the used JARKUS

structure in MorphAn.

Using the data transformation tool, all the data was converted from the old data structures to the

JARKUS data format. For the data from Sylt (Schleswig-Holstein), a little adjustment to the tool had to

be made, as the measuring date was sometimes also stated on the same line as the transect number.

In the function F_SH_DataAlloc the following was changed:

if length(tokens{li})>=2 %data lines exists of more than 2 numbers
 if strcmp(tokens{li}(2),'Bezeichnung')==1 %recognize start of

dataset by this word

 data.rough.raainr{ds}=char(tokens{li+1});

 %allocate metadata

5

To:

if length(tokens{li})>=2 %data lines exists of more than 2 numbers
 if strcmp(tokens{li}(2),'Bezeichnung')==1 %recognize start of

dataset by this word

 if size(tokens{li+1},2) == 2 % Recognizing if this token only

contains the profile number
 % or also the date of measurement, if both: only take the
 % first cell into account which is the profile number
 data.rough.raainr{ds}=char(tokens{li+1}(1));
 else
 data.rough.raainr{ds}=char(tokens{li+1});
 end

 %allocate metadata

2.3 Grid files
The grid files contain the position and orientation of the profiles of each coastal area. These files

were also converted to a structure usable by MorphAn with the use of the data transformation tool.

To be able to load all the measurement data into the same MorphAn project, the transect grid files

from all the partners (*.grd) should contain coordinates in the same coordinate system. Therefore,

the old coordinates in the grid files were transformed from the locally used coordinate system to the

global coordinate system: WGS-84, EPSG: 3395. This transformation was done with the use of

Python.

2.4 Changing coastal area numbers & names
All the data from the partners could be loaded individually into MorphAn after the JARKUS and grid

data were transformed into the right structure. However, to load all the data into one MorphAn

project, each coastal area should have a unique name and number. Unfortunately, this was not the

case. The coastal area numbers were therefore changed to 8-digit numbers, based on the country

code and locally used area number (Table 1). Some coastal area numbers in the JARKUS files were

changed with the use of a developed MATLAB script, Omzetten_kv_num_jrk_files* (Appendix Script

1), which could automatically identify the old area number and replace it with the new one. This was

done for the data from the Netherlands, Flanders, Baltrum/Langeoog and Denmark. Other numbers

were changed by transforming the old data again with the use of the data transformation tool and

giving another in-/output number. The coastal area numbers of the grid files needed to be changed

as well. This was easily done by hand within excel. The same applied for the coastal area definition

files (*.csv), as these files only contain a combination of coastal area numbers and coastal area

names.

The initial data from Denmark was grouped as if the whole Danish coast was one coastal area. While,

the Danish partners use 6 coastal areas. Therefore, the dataset needed to be split into 6 different

coastal areas based on the transect numbers, with each a unique name and number (Table 2). This

splitting of the measurement data (*jrk) was done with the use of a MATLAB script,

Omzetten_kv_num_jrk_files_Vestkyst (Appendix Script 2), which stored the data of the new coastal

areas (with their new numbers) in separated JARKUS files. The names given to the coastal areas were

based on local geographic areas. These names and numbers also needed to be changed in the grid

file and the coastal area definition file (*.csv), which was done by hand. Note: Holmsland is a part of

the coast which is measured in more detail (transects narrower spaced) and this area lies within the

6

Midtjylland (45000002) coastal area, indicated by the same coastal area number + one sub-number

(the 9th digit).

The data from Flanders consist of four coastal areas, but they are treated as one coastal area during

this internship project: Middelkerke. Because they are very small areas and close to Middelkerke.

Although, in the data each of these four coastal areas have their own number and name. Table 1

contains the new coastal area name and number combinations and the coastal areas are ordered

from south to north (west to east).

Table 1: An overview of the coastal area names in combination with the coastal area number, ordered from south to north

(west to east)

 Coastal area names Coastal area numbers Abbreviation

Flanders (Belgium) Middelkerke:

- Westende-Bad
- De Krokodille
- Middelkerke-Bad
- Middelkerke-Oost

320000**:

- 32000012
- 32000013
- 32000014
- 32000015

mdk

The Netherlands Zeeuw-Vlaanderen 31000017 zws

Walcheren 31000016 wal

Noord-Beveland 31000015 nb

Schouwen 31000013 sch

Goeree 31000012 goe

Voorne 31000011 voo

Delfland 31000009 del

Rijnland 31000008 rij

Noord-Holland 31000007 nh

Texel 31000006 tex

Vlieland 31000005 vli

Terschelling 31000004 ter

Ameland 31000003 ame

Schiermonnikoog 31000002 mon

Lower-Saxony
(Germany)

Baltrum 49260040 bal

Langeoog 49260050 lan

Schleswig-Holstein
(Germany)

Sylt 49250107 syl

Denmark Vadehavsoer 45000001 vad

Holmsland 450000027 hol

Midtjylland 45000002 mid

Agger 45000003 agg

Nationalpark-Thy 45000004 thy

VigsoJammerbugten 45000005 vig

Tannis-Bugt 45000006 tan

7

Table 2: The 6 coastal area names and numbers, plus the additional coastal area; Holmsland

Coastal area name Coastal area number Transect range

Vadehavsoer 45000001 6280 - 6970
Midtjylland 45000002 4210 - 6270
Holmsland 450000027 -
Agger 45000003 4010 - 4170
Nationalpark-Thy 45000004 3060 - 3670
Vigso-Jammerbugten 45000005 1510 - 3050
Tannis-Bugt 45000006 1010 - 1500

Now that all the original data files are converted to the JARKUS data structure files, the grid files

contain the coordinates in the same global coordinate system and each coastal area has a unique

coastal area number and name, the profile data could be loaded into the same MorphAn project.

With the use of MorphAn an overview map was made to indicate the locations of each coastal area

on this page and the following two pages (Fig. 3). The full dataset now consists of 5840 transect

locations. The measurements were done between 1874 – 2017, which means that almost 150 years

of measurements are available at some locations, although for most locations the consistent annual

measurements were done since 1965 (see Section 3.1.3, Fig 9). In total the dataset contains

approximately 135.000 measured transect profiles, leading to an average of a little more than 23

profiles per transect location.

8

9

Figure 3: The locations of the coastal areas indicated in a map over 5 different windows. The

abbreviations used are stated in Table 1. Only the coastal areas of which the transect

measurement data was used are indicated.

10

2.5 Converting JARKUS data to a usable data structure
Now that the dataset was complete and structured in the same format, the calculation of certain

morphological characteristics of the transects could be done. As MorphAn is provided with a scripting

tool which uses the Python language, the calculation of the morphological characteristics was firstly

attempted with the use of this scripting tool. Unfortunately, it was unsuccessful to load the

measurement data from a MorphAn project with the use of the scripting tool. Therefore, there was

no surplus value to quantify the characteristics with the use of Python, and consequently MATLAB

was used to write scripts for the quantifications (Chapter 3).

Before the calculation of the characteristics with the use of MATLAB could be done, the JARKUS data

structures needed to be converted and stored into MATLAB structure arrays (*.mat). This was

necessarily as the JARKUS structure is very inconvenient to use for calculations. Since the data is

structured in the following way:

Where the first line, the header, consists of 7 numbers containing (Deltares, 2016):

- The coastal area number (in this case the one from Schiermonnikoog, see Table 1)

- The measurement year

- The transect number

- The indicator for the type of measurement (standard yearly or additional)

- The date of the terrestrial measurement

- The date of the bathymetric measurement

- Number of measurement points for this transect measurement

Followed by the measurement data in pairs of X and Ys. Where each number in the uneven columns

(column 1, 3, 5 etc..) defines the distance from the reference point in meters (X) and each number in

the even columns defines the vertical distance from the reference height in cm (Y). The last digit of

the Y numbers is a tag, defining the type of measurement so that MorphAn can differ between

bathymetric, terrestrial or interpolated values. All measured transects for each coastal area are

stored below each other in a *.jrk text file, separated by the header lines (Deltares, 2016).

Furthermore, each coastal area got its own JARKUS document.

11

For each coastal area (for each JARKUS file) a MATLAB structure array was made. Containing the

measurement data for all the measured transects within that coastal area. Where each

measurement is stored in a structure field; with the x and y values, the transect number, the

measurement year, the number of data points and the coastal area number (Fig. 4). The coastal area

number should be the same for all the measurements in the same structure, as each structure only

contains the data for one coastal area. The data from the JARKUS files was converted to the new

structures with a MATLAB script, Load_jarkus.m (Appendix Script 3). This script automatically runs

through every line of the *.jrk text files and distributes the information into the right fields of the

structure array. The different transect measurements are found by finding the header lines, which

separates the measurement data for each transect from each other. From the Y data the last digit is

removed, as this information is not used in the calculation of the characteristics. A more detailed

description of the script, and how to use it, is found in Appendix Section 3.2.

Figure 4: An example of a MATLAB structure array in which each transect measurement is saved.

For each coastal area a *.mat structure file was created and saved. An overview of the structure

names is provided in table 3. It is advised not to change these names, as these names are also used in

the structure in which each characteristic is saved after calculation (Chapter 3). Furthermore, the

names are used to automatically call the characteristics from each coastal area in a loop. Therefore, if

one would change the name of a structure file, one should change the name in several scripts (and

within a function), and run some of these scripts again, as well.

The data from the coastal area Tannis-Bugt (45000006) measured in 2016, was reversed; the y values

got the wrong sign. With the use of a simple MATLAB script (Appendix Script 4) the y data from 2016

was multiplied by (-1) to fix the problem.

12

Table 3: An overview of the MATLAB structure names given to each coastal area data file.

 Coastal area names Structure names (*.mat)

Flanders (Belgium) Middelkerke Middelkerke_detail_320000newnum

The Netherlands Zeeuw-Vlaanderen zws_vlaanderen_31000017

Walcheren walcheren_31000016

Noord-Beveland nbeveland_31000015

Schouwen schouwen_31000013

Goeree goeree_31000012

Voorne voorne_31000011

Delfland delf_31000009

Rijnland rijnland_31000008

Noord-Holland nh_31000007

Texel texel_31000006

Vlieland vlieland_31000005

Terschelling terschelling_31000004

Ameland ameland_31000003

Schiermonnikoog schier_31000002

Lower-Saxony
(Germany)

Baltrum Baltrum_data_49260040

Langeoog Langeoog_data_49260050

Schleswig-Holstein
(Germany)

Sylt All_Sylt_49250107

Denmark Vadehavsoer Vestkyst_Vadehavsoer2_45000001

Holmsland Holmsland_data_450000027

Midtjylland Vestkyst_Midtjylland_45000002

Agger Vestkyst_Agger_45000003

Nationalpark-Thy Vestkyst_NationalparkThy_45000004

VigsoJammerbugten Vestkyst_VigsoJammerbugten_45000005

Tannis-Bugt Vestkyst_TannisBugt_45000006

13

3. Methods
One goal of this internship was to divide the North Sea coast (from Flanders to Skagen) into different
areas based on the morphology. Adjacent cross-shore profiles with a similar morphology will
together form an area. This will result in a distribution of the coast in different zones based on the
morphology. To accomplish this goal several steps had to be taken. Firstly, the coastal morphological
characteristics on which the division was based were determined. This also included that a method
to quantify these morphological features needed to be defined. Hence the question was; which
morphological characteristics will be used to characterise the coast and how will these characteristics
be determined? After this was determined, a tool to determine/quantify each characteristic needed
to be made. This tool could be made in MorphAn (Python) or in MATLAB. MorphAn is provided with a
scripting tool which uses the Python language. Unfortunately, as previously stated in Section 2.5, it
failed to use/load the measurement data from a MorphAn project with the use of the scripting tool
(Python). Therefore, MATLAB was used to write scripts for the quantifications. Now that the
measurement data was saved in usable structures (Section 2.5), the calculation of the characteristics
could be done. The calculations are described in this chapter (Section 3.1). The MATLAB scripts used
to calculate these characteristics can be found in Appendix Section 3. After the quantification, the
results were post-analysed by visualising them in figures (Section 3.2). With the use of these figures
the morphology was compared between the profiles, and the results are discussed in Chapter 4.

3.1 Defining and calculating coastal profile characteristics
This section will focus on how the morphology can be used to characterise a profile, using certain
morphological elements. Furthermore, the calculations of the characteristics are described.
Schematic cross-sections are used to visualise the quantification of these morphological
characteristics. Due to the limited available time, not all characteristics which were made up were
determined during this internship, some of these ‘potential’ characteristics are described in Chapter
5. Note: the described height points used in the schematic cross-sections (to determine certain
characteristics) might be different from the height points which were actually used during this
project.

3.1.1 Reference points
First, as each profile has its own horizontal reference point (the 0-meter cross-shore distance point is
not located at relatively the same position, like in figure 5), a morphological reference point must be
determined which is generally stable. A suitable point would be the peak of the first dune, as its
position is commonly quite constant. This reference point can be used to refer other cross-shore
positions too, like the position of a subtidal bar. In addition, the point where the mean sea level (0 m
elevation) crosses the profile can also be used as a horizontal reference point. Furthermore, it is
convenient to use intersections of horizontal height lines with the profile (e.g. the intersection of the
profile with the 0 m elevation line) to determine the morphological features. The distance between
two height points is relative to each other and not to the chosen reference point for each profile.
Therefore, such a value is comparable to other profiles (which have different reference points). For
example, figure 5 shows two identical cross-sections. They have a different horizontal reference
point. At a specific height (example +4 and -2) the profiles have a different horizontal location.
However, the distance between the points remains the same as it is not dependent on the reference
point. This method, using the intersection/height points, is used in the calculation of the
characteristics. The determination of the intersection/height points is further described in the next
section.

Furthermore, a vertical reference point should be set. If the vertical reference points are not at
relatively the same height for each profile, the profiles cannot be compared relative to each other.
Therefore, the vertical reference point should be a point relative to the a hydrodynamical position:

14

the mean sea level (MSL). In this project it is presumed that the used vertical ordinance datum (like
the NAP) for the measurements is (nearly) equal to MSL. Hence, the vertical profile values are used
as they are (not relatively to other values).

Figure 5: Two identical cross-shore profiles with different horizontal refence points.

3.1.2 Height points/intersection points
As stated above, to be able to determine the characteristics, certain points on the profile must be

known; height points. The height points are the points on a profile where a horizontal line at a

certain (chosen) height intersects with the profile. These points indicate where the profile has a

certain elevation. Characteristics of a profile can be determined with the use of several height points,

as described further in this chapter. Unfortunately, as not all measurements extended to a greater

depth than -8 meters, the deepest point which was used in the calculations is -8 m. The intersection

points of the profile with the horizontal lines at heights of +4, +2, 0, -2, -4, -6 and -8 m were

determined for all transect measurements of each coastal area and saved in a MATLAB structure

array. This was done with the Calculate_intersection_points.m script (Appendix Script 5). If there

were multiple intersections of a profile with the same horizontal height line all intersection points

were saved. Which intersection point (the most landward, most seaward or in between) was used

during the calculation of the characteristics is described in the relevant sections.

Figure 6 is an example of the structure in which the intersection points were saved (left side of the

figure). Mind: the structure fields of the structure are also structures for each coastal area. And the

fields of these structures (right side of the figure, example for Schiermonnikoog) contain all the

intersection points for each transect within that coastal area under a certain name. Table 4 gives an

overview of the names given to all the intersection point variables used in the structure.

Figure 6: Left: An example of the first layer of a structure in which the intersection points are saved. Right: the second layer of the structure, containing the

actual intersection points for a certain coastal area, in this case for Schiermonnikoog.

15

Furthermore, the fields of the structures within the structure also contain information about the

transect; transect number, measurement year, coastal area number and number of measuring points

(Fig. 6).

Table 4: Overview of the variable names given to each

intersection point variable used in the structure.

Height of the
horizontal line

Variable name
in the struct

+4 x_is_plus_4

+2 x_is_plus_2

0 x_is_0

-2 x_is_min_2

-4 x_is_min_4

-6 x_is_min_6

-8 x_is_min_8

3.1.3 Widths and Slopes
Now that the positions of certain height points in the profiles were determined, the distances

between these height points could be calculated. This can give information about the width and

slope of parts of the profile. For instance, figure 7 indicates the width (Wb) and averaged slope (βb) of

the beach (including the intertidal beach), between height points +4 and -2 meter. The Wb and βb can

be determined by finding the intersection points of the profile with those height lines and determine

the distance between those points (Fig. 7), which can be used to determine the slope. Furthermore,

the width (Wsf) and averaged slope (βsf) of the shoreface can be determined between two height

points. For example, in figure 8 the width and slope between height points -2 and -10 meter are

indicated. The shoreface slope could also be determined in multiple smaller parts, for example in two

parts: one in the active bar zone, and the other one seaward of the last bar (so outside of the active

bar zone).

Figure 7: A schematic overview of morphological characteristics in the upper part (intertidal to dunes) of a cross-shore
profile.

16

Figure 8: A schematic overview of some morphological characteristics of a cross-shore profile.

17

MATLAB scripts (Appendix Scripts 6 and 7) were written to determine the width and slope between

certain height point positions (Table 5). The calculated widths and slopes were stored in a MATLAB

structure array similar to the intersection points (Fig. 6). Having a structure for each coastal area

within the structure, containing information about the transect; transect number, measurement

year, coastal area number and number of measuring points as well as the values of the width/slope

variables.

Some height points occur at multiple locations, therefore, for some height points, more positions can

be used to calculate the width. Which height position was chosen during the calculation of each

width variable is stated in Table 5. Basically, for the height points +4, +2 and 0 the most seaward

located height points were taken, while for the height points -2, -4, -6 and -8 the most landward

located height points were taken. This was done in an attempt to use the points which are closest to

the MSL position. However, the most seaward location was used for the -4 height point and the most

landward location was used for the -8 height point for the calculation of the width and slope

between height points -4 and -8. This was done to determine the slope of the most seaward part of

the shoreface which was measured, while avoiding the influence of sandbars on the results (finding

points of -4 and -8 which are adjacent). If the most seaward point of -4 was located further seaward

than the -8 point, the first -4 point located landward of the -8 point was found and used. If the result

of any width calculation gave a negative width, the variable was left blank as this is not possible.

Furthermore, Appendix Table 1 contains the names of each width and slope variable, within the

structure, which are used in this project.

Additionally, the mean (time-averaged) widths and slopes for each part of the profiles was

calculated. This was done by taking the width and slope values of every measurement done at each

transect and average them. Besides the mean widths and slopes over the whole history of

measurements, the means were also determined for the period 2006-2016. This was done to get (or

at least attempt to get) equivalent results for all the transects, as some transects were monitored

consistently for over 50 years while others were not (Fig. 9). Although, even for the period 2006-

2016, the amount of annual measurements done per transect is not equal for all transects. This is

also indicated in figure 9, where the dotted lines indicate periods during which some measurements

were done, though not annually. So, for some coastal areas (vad, thy, vig and tan) only a few

measurements were done during the period 2006-2016. Furthermore, the standard deviation was

also determined along with the means, to indicate the amount of variation over time. The calculation

of the means was only done for each transect which was measured in 2016, except for the coastal

areas in Denmark, because most of the Danish transects were not measured in 2016 (Fig. 9). To get

all the widths (throughout the measurement history) of one transect, the index numbers (location)

on which these widths are saved in the structure, for that specific transect, must be known. The

function GetStructIndex (Appendix Function 2) does this for all measurements measured for a given

year. It has been decided to only use all the transects which were measured during the same year,

because otherwise it was too difficult to select all the results for each transect. As mentioned, the

index of each transect which was measured in 2016 was used. Except for the coastal areas in

Denmark for which a different year was taken, because a lot of the Danish transects were not

measured in 2016. The year taken for each Danish coastal area is based on the amount of transects

measured during that year: Vadehavsoer: 2014, Midtjylland: 2014, Agger: 2016, Nationalpark-thy:

2009, VigsoJammerbugten: 1995, Tannis-Bugt: 2008 and Holmsland: 2014. The mean width and slope

variable names used in the structure can be found in Table 5.

18

Figure 9: An overview indicating the periods over which the transects were measured per coastal area. The bars indicate periods with (almost) consistent annual measurements. The dotted lines

indicated periods over which some measurements were done but not consistently annually. The dot (coastal areas Sylt) indicates a single measurement done in 1984. Note: the year spacing at the

x-axis is not consistent.

19

Table 5: Mean width and slope variable names used in the structures within the main structure. Note: the variable names of

the means from the period 2006-2016 are the same as the names in the table but with the extension ‘_2006_2016’.

1st height
point (m)

2nd height
point (m)

Mean width variable
name

Mean slope variable name

+4 most
seaward

0 most
seaward

mean_width_0plus4 mean_slope_0plus4

+2 most
seaward

0 most
seaward

mean_width_0plus2 mean_slope_0plus2

+4 most
seaward

-2 most
landward

mean_width_min2plus4 mean_slope_min2plus4

+2 most
seaward

-2 most
landward

mean_width_plus2min2 mean_slope_plus2min2

0 most
seaward

-2 most
landward

mean_width_0min2 mean_slope_0min2

-2 most
landward

-4 most
landward

mean_width_min2min4 mean_slope_min2min4

-2 most
landward

-6 most
landward

mean_width_min2min6 mean_slope_min2min6

-2 most
landward

-8 most
landward

mean_width_min2min8 mean_slope_min2min8

-4 most
seaward

-8 most
landward

mean_width_min4min8 mean_slope_min4min8

3.1.4 Volumes
The volume of, for example, the beach (Vb) can be determined as the volume under a cross-shore
profile between two height points (points where the profile intersects with a horizontal line at a
chosen height). For example, in figure 7 y = +4 m and y = -2 m are taken, since the whole beach,
including intertidal beach, is generally located between these points. This can be done by finding the
intersection points of the profile with both height lines and determining the volume between those
heights (upper and lower boundary in figure 7) and between those points (land- and seaward
boundaries based on upper and lower boundaries, respectively, in figure 7). Note the potential
problems with determining the positions of a depth point, as one depth can occur at multiple
locations in one profile (see Chapter 6). Also note the influence of a seaward propagating (growing)
dune on the volume of the beach when using this calculation method, further explained in Chapter 6.
Furthermore, the volume of the shoreface (Vsf) can be determined between two height points. For
example, in figure 8 y = -2 m and y = -10 m are taken. The calculation of the volume can be done with
a similar approach as the calculation of the Vb. The shoreface might also be divided into an upper and
lower part, as these often differ in morphology. When coupling the volume(s) of (the parts of) the
shoreface to the averaged slope(s), the general shape of the profile might be determined. If a volume
is less/more than the ‘triangle’ volume, determined as the volume below the straight line between
two height points, the shape of the profile is generally convex/concave.

With the use of the determined height points (Section 3.1.2) and the data of the measured profiles,
the volume between two height points could be determined for all the measured transects. A
MATLAB script (Appendix Script 8) was developed to determine the volumes between certain height
points. With the use of the Matlab OpenEarth Tools from Deltares a function was found which could
calculate the volume under a profile between specified boundaries (Fig. 10). The function is used in
the script which calculates the volumes and stores the results into a structure similar to the widths
and slopes. Between which height points the volumes were calculated, along with the names given
to the variables inside the structure, is stated in Appendix Table 2. The mean (time-averaged)

20

volumes, over the whole measurement history and over the period 2006-2016, were also determined
in the same way as the means of the widths and slopes. The mean volume variable names used in the
structure can be found in Table 6. After the volumes were calculated, the trends in the volume
changes over the period 2006-2016 were determined. Per transect profile a linear trend was fitted
through the volume values, one for each year in this period (if there was data available), and the
slope of this linear trend was stored in a structure. This slope indicates the amount of sediment
volume change (in m3), erosion or deposition, that occurred on average per year over that period.
The names of these trend variables are also presented in Appendix Table 2.

Table 6: Mean volume variable names used in the structures within the main structure.

1st
height
point
(m)

2nd
height
point
(m)

Mean volume
variable name

Mean volume variable name
period 2006-2016

+4 most
seaward

0 most
seaward

mean_vol_0plus4 mean_vol_0plus4_2006_2016

+2 most
seaward

0 most
seaward

mean_vol_0plus2 mean_vol_0plus2_2006_2016

+4 most
seaward

-2 most
landward

mean_vol_min2plus4 mean_vol_min2plus4_2006_2016

+2 most
seaward

-2 most
landward

mean_vol_plus2min2 mean_vol_plus2min2_2006_2016

-2 most
landward

-4 most
landward

mean_vol_min2min4 mean_vol_min2min4_2006_2016

-2 most
landward

-6 most
landward

mean_vol_min2min6 mean_vol_min2min6_2006_2016

-2 most
landward

-8 most
landward

mean_vol_min2min8 mean_vol_min2min8_2006_2016

Figure 10: A figure representing how the volume is calculated for one transect. The horizontal dashed lines indicate the upper and lower boundaries,

whereas the vertical dashed lines indicate the land and seaward boundaries. The volume is determined between the boundaries indicated by the green

area inside the rectangle.

21

Figure 11 was made to indicate the relative differences, due to different axis ranges, between the
figure displaying the full profile (Fig. 8) and the zoomed in figure (Fig. 7). This figure is also an
overview of several coastal characteristics. Mind, some of the characteristics indicated in the figures
(7, 8 and 11) were not calculated and are discussed as potential characteristics in the analysis of this
dataset, in Chapter 5. Note: both axes are exaggerated in the figures, where the x-axis is more
exaggerated than the y-axis. Furthermore, the y-axis is more exaggerated for the full profile figures
than for the zoomed in figures (Fig. 11).

22

Figure 11: A schematic overview of a cross-shore profile along with a zoom in on the upper part of the profile to indicate the relative differences, due to different axis ranges, between figures 7
and 8.

23

3.2 Plotting characteristics

3.2.1 Overview figures
To analyse the characteristics of the profiles, the results of the calculations must be visualised. Using

MATLAB, scripts were written to plot the characteristics (Appendix Section 3.6), in an order from

south to north, of each transect of each coastal area. The plotted results are the mean (time-

averaged) values of a specific characteristic for each transect. The means were determined over the

full history of measurements and for the period 2006-2016 (Section 3.1). They are used to indicate

the average state of each profile, rather than only a snapshot. The means were also calculated for

the period 2006-2016 to get (or at least attempt to get) equivalent results for all the transects, as

some transects were monitored for over 50 years while others were not (Fig. 9). Although, even for

the period 2006-2016, the amount of measurements done per transect is not equal for all transects,

as some were not measured annually. Figures 14 and 15 indicate the mean slopes for the full history

of measurements and for the period 2006-2016, respectively. The transects are plotted in different

colours based on the mean slope values to amplify the differences in the mean slopes. The mean

slope (and width, Appendix figures 1 and 2) value ranges for each colour are specified in Table 7. In

addition, the standard deviations of the slopes were also plotted (Appendix figures 3 and 4),

indicating the amount of variation/dynamics in the profiles.

Table 7: Table indicating which value ranges are plotted in which colour per characteristic, for the figures 14 and 15.

As described in Section 3.1.4, the linear trends in the volume changes over the period 2006-2016

were determined, for selected parts of the profiles. The slopes of the trends, indicating the average

amount of sediment volume change per year over that period, were saved. The volume trend figure

(Fig. 16) indicates these linear trends in the volume change per year, in an order from south to north,

for each transect of each coastal area. The transects are plotted in different colours, based on the

values of the trend in volume change, to amplify the differences in the trends. These value ranges for

each colour are specified below in Table 8.

+4 & 0 Slope range
(1/xx)

Width
range (m)

Colour +2 & -2 Slope range
(1/xx)

Width
range (m)

Colour

0 – 20 0 – 75 Red 0 – 25 0 – 100 Red

20 – 40 75 – 150 Magenta 25 – 50 100 – 175 Magenta

40 – 60 150 – 225 Blue 50 – 75 175 – 250 Blue

60 – 80 225 – 300 Cyan 75 – 100 250 – 325 Cyan

80 – 100 300 – 375 Green 100 – 125 325 – 400 Green

100+ 375+ Yellow 125+ 400+ Yellow

-2 & -4 Slope range
(1/xx)

Width
range (m)

Colour -4 & -8 Slope range
(1/xx)

Width
range (m)

Colour

0 – 30 0 – 75 Red 0 – 50 0 – 300 Red

30 – 60 75 – 150 Magenta 50 – 100 300 – 600 Magenta

60 – 90 150 – 225 Blue 100 – 150 600 – 900 Blue

90 – 120 225 – 300 Cyan 150 – 200 900 -
1200

Cyan

120 – 150 300+ Green 200+ 1200+ Green

150+ - Yellow - - Yellow

24

Table 8: Table indicating which trend volume value ranges are plotted in which colour per characteristic, for figure 16.

+4 & 0 Trend Vol range
(m3/yr)

Colour +2 & -2 Trend Vol
range (m3/yr)

Colour

< -40 Red < -40 Red

-40 – -10 Yellow -40 – -10 Yellow

-10 – 10 Black -10 – 10 Black

10 – 40 Dark green 10 – 40 Dark green

40+ Light green 40+ Light green

-2 & -4 Trend Vol range

(m3/yr)
Colour -2 & -8 Trend Vol

range (m3/yr)
Colour

< -40 Red < -40 Red

-40 – -10 Yellow -40 – -10 Yellow

-10 – 10 Black -10 – 10 Black

10 – 40 Dark green 10 – 40 Dark green

40+ Light green 40+ Light green

3.2.2 Boxplots
For the slopes, calculated for the chosen section of each transect, boxplots are made to indicate the

variation in the slopes per transect over the whole measurement history and the period 2006-2016.

A small description of the script generating the boxplots is stated in Appendix section 2.2. The

boxplots are plotted per coastal area, as they become unreadable when plotting more data points

(Figures 17-24, Section 4.2). Although, when plotting the boxplots of only one

coastal area the details of the plots are also hard to distinguish. Therefore, an

example of one boxplot is shown in figure 12. The MATLAB function boxplot was

used to plot the data in boxplots. What the boxplot shows: the central

horizontal line indicates the median (not visible in the figures due to the

number of boxplots in one figure), the top and bottom edges of the box show

the 75th and 25th percentiles, respectively, the whiskers (also not visible in the

figures, these mark the end of the dashed lines) extend to the most extreme

data points which are not considered as outliers, and the outliers are marked

with a ‘+’ symbol. The boxplot function sets a data point as an outlier if it is

greater than q3 + w × (q3 – q1) or less than q1 – w × (q3 – q1), where w is the

maximum whisker length, q1 is the 25th and q3 is the 75th percentile of the data.

The whisker value is approximately +/- 2.7σ by default which has a 99.3 percent

coverage if the data are normally distributed. The plotted whisker extends to

the ‘adjacent value’, which is the most extreme value that is not considered as

outlier (MathWorks, 2017).

3.2.3 Removing island heads from figures
The objective is to analyse differences between the main parts of the coast. Therefore, a tool was

fabricated as a function in MATLAB to remove the transects located at the island heads and some

other locations which were clearly not located on the straight coast (like behind a dam), from the

figures. Appendix table 3 specifies for each coastal area which transects were removed from the

figures and the reason to remove them. The function uses the name of the coastal area used for the

structure names within the structure to determine which transects are removed from the figure,

therefore the names of the structures are advised to keep the same. Although, some names might be

a little unusual as they were used as working names. The names used for each coastal area in the

structure are found in Table 3. For the plotting of the boxplots a variation of the function is used to

Figure 12: An example of one

single boxplot

25

split the island heads, as the variables for the boxplot needed to be arrays (all the annual values for

the chosen period) instead of only one (mean) value.

3.2.4 Categorization
One goal of this project is to investigate if parts of the North Sea coast can be distinguished from

each other based on certain profile characteristics. A way of doing this is by assigning the transects to

a category based on the characteristics. The method used during this project is making categories

based on the slopes of certain parts of the profile, where the relative slope of one part to the

adjacent parts was determined to check which part is steeper. Because, if the relative differences in

slopes between small parts of the whole profile are known, a schematic representation of a that

profile can be made, indicating the general shape of the profile. An extra step can be to split the

profiles, which have the same general shape (placed in the same category), based on the actual slope

values of certain parts. More ways of doing these categorizations are proposed in Chapter 5. Here 5

distinct categories are made based on the mean slopes between the following parts: +4 & 0, +2 & -2,

-2 & -4 and -4 & -8. Where the 5 categories are (Table 9):

Table 9: Table indicating the 5 categories in which the transects were subdivided. Note: the ‘>’ sign (red) indicates that the

left slope is steeper than the right slope, and the ‘<’ sign (green) indicates that the left slope is gentler than the right slope.

Category # Slope Slope Slope Slope

1 +4 & 0 > +2 & -2 > -2 & -4 > -4 & -8

2 +4 & 0 > +2 & -2 < -2 & -4 > -4 & -8

3 +4 & 0 > +2 & -2 > -2 & -4 < -4 & -8

4 +4 & 0 > +2 & -2 < -2 & -4 < -4 & -8

5 (other) +4 & 0 < +2 & -2 -2 & -4 -4 & -8

The schematic representations of the shape of the profiles that were distributed in the first 4

categories are illustrated in figure 13. Note: both axes of the figures are exaggerated, where the x-

axis is more exaggerated than the y-axis.

Figure 13: A schematic representations of the shape of the profiles in the 4 categories.

26

On top of this categorization, a second categorization was added. This one was done based on the

mean slope value of the part between height points -4 and -8, to distinguish between profiles with a

steeper/gentler slope in the deeper part of the shoreface. Four more categories were made (Table

10), where each category has a colour in which it is plotted in the resulting categories figure (Section

4.3, Fig. 26):

Table 10: Table indicating the 4 extra categories and the colour in which each category is plotted in the figure (Fig. 26).

Category # Slope (-4 & -8) Colour in figure

1: Very gentle slope Gentler than 1/200 Green

2: Medium-gentle slope Between 1/200 and 1/125 Blue

3: Medium-steep slope Between 1/125 and 1/50 Magenta

4: Very steep slope Steeper than 1/50 Red

27

Figure 14: Figure indicating the mean slopes over the whole measurement history along the North Sea coast, from south to north. The coastal areas are divided by the vertical dashed lines and the

names are shown in the top of the figure. The colours are based on the values stated in Table 7. The horizontal green line, per coastal area indicates the mean of the mean slopes of that coastal

area. And the two horizontal black lines indicate the distance of 2 times standard deviation from the mean. Indicated with letters are areas discussed in Section 4.1.1.

28

Figure 15: Figure indicating the mean slopes over the period 2006-2016 along the North Sea coast, from south to north. The coastal areas are divided by the vertical dashed lines and the names

are shown in the top of the figure. The colours are based on the values stated in Table 7. The horizontal green line, per coastal area indicates the mean of the mean slopes of that coastal area. And

the two horizontal black lines indicate the distance of 2 times standard deviation from the mean.

29

Figure 16: Figure indicating the trend in the volume change per year over the period 2006-20016 along the North Sea coast, from south to north. The coastal areas are divided by the vertical

dashed lines and the names are shown in the top of the figure. The colours are based on the values stated in Table 8. The horizontal green line, per coastal area indicates the mean of the trend in

the volume change per year of that coastal area. And the two horizontal black lines indicate the distance of 2 times standard deviation from the mean. The areas indicated with the blue box and

arrows are discussed in Section 4.1.2.

30

4. Analysis of the characteristics
The results from the calculation of the characteristics are analysed in this section. The analysis of the

characteristics can be done quite extensively. Though, due to the lack of available time, the analysis

during this project is limited. Chapter 5 discusses about some of the potential analyses that could be

done in the future with this dataset and the calculated characteristics, including possible

characteristics that are yet to be calculated.

A selection of the figures is discussed here. First the ‘overview’ figures are treated, which give an

overview of the characteristic values along the North Sea coast, from south to north. These include

the mean (time-averaged) slope figures (Section 4.1.1) and the figure indicating the trend in the

volume change over the period 2006-2016 (Section 4.1.2). Furthermore, some coastal areas with

notable results from the ‘overview’ figures, are looked at in greater detail. By looking at the

corresponding boxplots (Section 4.2). The boxplots indicate the variation of the slope value of a

certain part of the profile. Finally, the basic categorization is analysed (Section 4.3).

4.1 Analysis of the overview figures

4.1.1 Mean slope
Figure 14 shows the mean slopes over the whole measurement history, for a selection of transects

(specified in Section 3.1.3), for each coastal area along this part of the North Sea coast in an order

from south to north. Whereas figure 15 shows the means slopes of only the period 2006-2016. The

most striking observations in the figures are discussed here, in an order from south to north.

Middelkerke

Starting from the south, the Middelkerke coastal area has a gentler slope, for all the parts of the

profile, compared to most other coastal areas. Especially the deeper part is very gentle, indicating a

quite flat coastal shelf.

Zeeland

The deep parts of the coastal areas of the province of Zeeland have very steep slopes compared to

almost all other coastal areas (indicated with (a) in figure 14), except some profiles (outside of

Zeeland) near tidal inlets. This is probably due to the tidal channels located next to these coastal

areas. At the far north part of Walcheren, the slopes become gentler (indicated with (b) in figure 14),

this likely due to a curve in the coastline which allows the sediment to accumulate easier. For

Schouwen, in the middle of the area, a sort of spit is attached to the coast, decreasing (even) the

mean slope steepness at all ranges (indicated with (c) in figure 14), which suggests that this feature

occurs often at this point (also very dynamic point, see variation Section 4.2). In the north part of

Goeree the slopes of the upper part of the profile are very gentle, while this is not the case for the

deepest part of the profile. Furthermore, the -2 & -4 slope indicates a lot of variation in slope along

the whole coastal area.

Dutch mainland

When looking at the overall trend in slopes along the coast, the trend along the coastal areas

Delfland, Rijnland and Noord-Holland is quite outstanding for the somewhat deeper parts. Here,

clearest noticeable for the -4 & -8 slope, the mean slope trend a bit towards the south, in Delfland, is

quite steep, then becomes gradually gentler towards the north, after which the slope steepens again

(indicated with (d) in figure 14). This can be explained by the old sediment deposition fan of the

former Rhine discharge mouth, which was located around the middle of the Rijnland coastal area

(Stouthamer et al., 2010). The effect of the harbour jetties of Ijmuiden, marking the border of

Rijnland and Noord-Holland, is clearly visible on the slopes, which are gentler near the jetties

31

(indicated with (e) in figure 14). The far north part of Noord-Holland is steeper due to the nearby

tidal inlet.

Wadden islands

The slopes of all the parts of the profile seem to become generally gentler going from Wadden island

to island (indicated with (f) in figure 14), until Langeoog (note: some transects of Schiermonnikoog

are plotted higher than the y-axis maximum range). This might be due to a different orientation to

the general wind field or due to tidal influences. Furthermore, the ‘Afsluitdijk’ might affect this by

causing sediment import to the Wadden sea, especially to the basins of the Texel and Vlieland inlets

(Elias et al., 2012). Along the island of Sylt the slopes seem to remain quite constant, being fairly

steep in the upper two parts of the profile, but average for the deepest two parts of the profile,

compared to the other coastal areas.

Midtjylland

The coastal area Midtjylland indicates a gradual increase in slope steepness towards the north for all

parts of the profile, which is quite extreme for the slope between the -4 and -8 height points

(indicated with (g) in figure 14), as this slope is very gentle in the south of this area. This might be due

to Horns Rev, which is a shallow area (a submerged shoal) off the coast at Blåvands Huk, the core of

Horns Rev consists of a moraine from the Saalian glaciation (Aagaard, 2011). This feature possibly

shields the southern end of Midtjylland from the waves of the main winds and therefore sand is able

to accumulate there. Additionally, the longshore sediment transport along the coastal area

Midtjylland is directed to the south, transporting sediment from the northern parts to the south

where some sediment accumulates at the coast (Aagaard, 2011). Furthermore, at the far northern an

inlet is located towards a fjord. This might serve as a sediment sink which would explain the

steepness of the slope by decreasing the available sand in the nearby profiles, making them steeper.

VigsoJammerbugten

The slopes in coastal area VigsoJammerbugten, indicate an arch form, from south to north, being

gentler in the middle of the coastal area compared to both sides (indicated with (h) in figure 14). This

might be explained by the overall coastline shape of this area, as the coastline describes a nice curve

(further described in Section 4.2). Making it possible that more sediment is accumulating in the

middle area of this curve; the centre of the coastal area.

Comparison between coastal areas

Overall, the slopes higher up in the profile (+4 & 0, +2 & -2) are quite comparable for the whole

Dutch mainland. For Flanders the slopes are gentler. Also, the slopes on the Wadden islands are

gentler, which increases towards the northern/eastern islands, except for Langeoog and Sylt. The

latter having even steeper slopes than the Dutch mainland. The Danish mainland has generally

slightly steeper slopes compared to the Dutch mainland.

For the deeper parts this is different. Where, in general, the slopes in Flanders are quite gentle,

comparable to the slopes on Terschelling, Ameland and Schiermonnikoog. Furthermore, the slopes of

the coastal areas in the province of Zeeland are the steepest slopes of all the slopes along the coast.

The mean slopes values of the Dutch mainland (Delfland, Rijnland and Noord-Holland), like

mentioned above, describe a sort of arch (indicated with (d) in figure 14). Having comparable slopes

to Texel, Vlieland, Sylt and some parts of the Danish coast at the sides of this area, whereas the

middle of the area (gentler slopes) has slopes comparable to those found at Flanders, Terschelling,

Ameland, Schiermonnikoog and other parts of the Danish coast. Along the Danish coast the mean

slope values vary quite considerably, making it difficult to compare.

32

The general arch forms in the slope values, previously identified, along the Dutch mainland (Delfland,

Rijnland and Noord-Holland) and along VigsoJammerbugten, are most likely not caused by the same

mechanism. As the first one is caused by the remains of the deposited sediments from the old

discharge mouth of the rhine, while the second one might be caused by the general shape of the

coastline.

4.1.2 Volume trend
The volume trend figure (Fig. 16) indicates the linear trends in the volume change per year, taken

over the period 2006-2016. For most coastal areas all the transect points seem to alternate above

and below the zero-volume change, indicating a relative stable volume condition over a large scale.

Although, in the middle of the Noord-Holland coastal area an area with a positive sediment volume

trend is revealed (indicated with blue arrows in figure 16). Furthermore, the volumes of the higher (>

-2m) parts of the profiles do not appear to change (at all) for Middelkerke, Rijnland, Sylt and large

parts of the Danish coast. Large variations in the volume trend of the shoreface (between -2 m and -8

m, indicated with a blue box in figure 16) from coastal area Delfland to Texel, which overall seems to

be a little more positive than negative (note the y-axis scale), might be caused by shoreface

nourishments implemented in these coastal areas. In addition, the subtidal bar behaviour may very

well also influence the dynamic volume trends of the deeper parts of the profiles.

4.2 Variation of the different slopes (boxplots)
The boxplots of some selected coastal areas, which show some interesting results discussed above,

are discussed here. The selected coastal areas of interest are treated from south to north.

Starting at the coastal area Middelkerke, the boxplot is plotted for the slope of the +4 & 0 part of the

profile (Fig. 17). The boxplot indicates that the slope of this part of the profile, between the +4 and 0

m height points, is rather stable between 1/50 to 1/60 for the whole coastal area. Furthermore,

there is almost no variation between the transect profiles within this coastal area.

Figure 17: Boxplot of the slope between +4 and 0 meter, for the coastal area Middelkerke

Also, for Walcheren the boxplot for the +4 & 0 part is plotted (Fig. 18). This was mainly done for the

interesting part in the far north of Walcheren where the slopes become gentler. Overall the amount

of variation, indicated by the boxplots, is different along the coastal area. With rather stable slopes

33

for the southern part of the area around 1/25 to 1/30, very steep slopes in the middle of the area

which are extremely stable probably due to the hard structure near Westkapelle and in the northern

part the slopes were more variable over the measurement history, indicated by the wider spread of

the boxplots. This indicates a more dynamic beach in the north part of Walcheren.

Figure 18: Boxplot of the slope between +4 and 0 meter, for the coastal area Walcheren.

For Schouwen slope between -2 & -4 is plotted as a boxplot (Fig. 19). The slope in the southern and

northern part of this coastal area is rather stable with minor variation. Although the amount of

variation in the middle part of the coastal area is very striking. This part is located on the west-north-

western part of the area. This part is apparently very dynamic, which might be caused by occasional

welding of sandspits to the beach.

Figure 19: Boxplot of the slope between -2 and -4 meter, for the coastal area Schouwen.

34

The deeper part of the profile, -4 & -8, is plotted in a boxplot for Rijnland (Fig. 20). This part was

interesting due to the gentle slope caused by the deposition fan of the old Rhine (see previous

section). The bandwidth of the variation in the slope is very small for the southern part of the area,

where some peculiar alongshore variation is indicated, which seems very stable according to the

narrow bandwidth. Towards the north the slopes become somewhat gentler and the amount of

variation also increases.

For Noord-Holland the boxplot shows the variation in the slopes between the +2 and -2 height points

(Fig. 21). Notable is the amount of variation, which is relatively large. However, the most remarkable

area is the steep middle part of the coastal area. Which is probably caused by the “Hondsbossche

Zeewering” which is located there. Furthermore, towards the north the profiles become steeper

when approaching the tidal channel between Noord-Holland and Texel.

Figure 21: Boxplot of the slope between +2 and -2 meter, for the coastal area Noord-Holland.

Figure 20: Boxplot of the slope between -4 and -8 meter, for the coastal area Rijnland.

35

The western part of Ameland was indicated to have a very wide beach (gentle beach slope) in the

‘overview’ figures (Fig. 14 and 15). Note: the island heads are not plotted. To get more information of

the beach slope on the island the +4 & 0 slope at Ameland is plotted in a boxplot (Fig. 22). The slope

is much gentler, but also much more variable, in the western part of the island compared to the rest.

Where it is generally stable around a slope of 1/40. The variation in the slope in the western part of

the island might be cause by occasionally huge sandspits/bars which attach to the beach at this

point.

The slope of the deep parts of the profiles in Midtjylland describe the same alongshore trend as the

beach slopes on Ameland. Therefore, Midtjylland slopes between the -4 and -8 height points are

shown in a boxplot (Fig. 23). The same steepening, when going from south to north along the area, is

visible in the boxplot. Furthermore, which is fairly remarkable, the amount of variation in the slope

seems rather equal along the whole area. Indicating that the gentler slope in the south is most

probably not caused by an occasionally sudden sediment input, but by a more permanent situation in

the deeper shoreface, like the previously discussed Horns Rev (Section 4.1.1).

Figure 22: Boxplot of the slope between +4 and 0 meter, for the coastal area Ameland.

Figure 23: Boxplot of the slope between -4 and -8 meter, for the coastal area Midtjylland.

36

The VigsoJammerbugten slopes in the deeper part of the profiles have a sort of arch in the

alongshore trend. A boxplot of the slopes between the -4 and -8 height points is shown (Fig. 24) to

give more detailed information about this coastal area for this characteristic. When looking at the

boxplot, which is also a zoom in into the coastal area, there are two (not one) arch shaped features in

the alongshore trend, with even a small third one in the northern part (indicated in figure 24). This

might be explained by the general shape of the coastline of this coastal area, as there are two arches

and a weakly third one in the coastline (see figure 25). With the more southern one being smaller

than the middle but greater than the northern one, which corresponds to the shapes indicated in the

boxplot. Furthermore, the overall variation in the slope is nearly equal along this coastal area.

Figure 25: Map indicating the three arches in the coastline of the coastal area

VigsoJammerbugten.

Figure 24: Boxplot of the slope between -4 and -8 meter, for the coastal area VigsoJammerbugten. Indicated are the three arch

shaped features in the alongshore trend.

37

4.3 Analysis of the categories
Figure 26 displays the categories along the coastal areas. It is evident that category 1 occurs most

often, which are the profiles with an increasingly gentler slope going seawards; a convex profile

shape. Although, in the coastal areas of the province of Zeeland (zws, wal, nb, sch, goe and voo)

category 1 is not represented as much (indicated with (a) in figure 26). Here the other three

categories occur more often. Where categories 3 and 4 indicate a steeper sloping deep part

compared to the rest of the profile, which occurs often when a (tidal) channel is located along the

shore. Furthermore, the red colour of the plotted categories for these coastal areas indicate that the

-4 & -8 slope is steeper than 1/50. The same is indicated at the northernmost point of Noord-Holland

(indicated with (b)), where the transect profiles are located close to the tidal inlet between Texel and

Noord-Holland. A part near the south of Sylt is dominated by category 2 (indicated with (c)),

indicated that a bump is present in the general profile shape. This category also occurs on the

southern part of Vlieland (also indicated with (c)).

Looking at the steepness of the deeper foreshore (slope -4 & -8), indicated by the colours, the

Wadden islands have the gentlest sloping deeper foreshores (indicated with (d)). Whereas, the

slopes in Zeeland are steepest, as mentioned before. In general, the slopes, and the general shape

categories, are quite comparable between the coastal areas of the Dutch mainland (Delfland,

Rijnland and Noord-Holland) and the coastal areas of the Danish mainland (indicated with (e)). As

most of these transect profiles are within category 1, with only some alongshore different variations

in -4 & -8 slopes.

38

 Figure 26: Figure indicating the distribution of the transect profiles into the categories. The first categorization is plotted on the y-axis. The second categorization is visualised by the colour of

the points. Where: Green = category 1, Blue = category 2, Magenta = category 3 and Red = category 4. Indicated with letters are areas discussed in Section 4.3.

39

5. Potentials of this dataset
As mentioned before, the analysis of this dataset during this project is limited due to the available

time. Therefore, some potential analyses which can be done in the future with this dataset are

discussed here.

An averaged profile, per transect location, can be made, which indicates the general shape of the

profile while eliminating some temporal features, like sandbars. This can be done by firstly

interpolating the measurements done at the same transect profile to a defined transect grid, to make

data points at the same positions. When the data points are available at the same position an

average data point over time can be made for that position. Thereafter the average data points

should be connected to make a new profile: the averaged profile.

The slope of the intertidal zone can also be determined per transect. The averaged slope of the

intertidal zone (βi), preferably coupled to the mean tidal range at each location, can be determined

with the distance and height difference between the mean high and low waterline points. So, each

calculation must be coupled to the averaged tidal range at the profile location. The βi can be

determined by finding the intersection points of the profile with the averaged low- and high-water

height lines and calculating the distance and slope between those points (Fig. 27).

Figure 27: Schematic cross-shore profile indicating the intertidal zone and the averaged slope of the intertidal zone (βi).

The volume of the dunes can be determined between, for example, height point z = +4 m and a

further landward positioned point (Fig. 7, indicated by (Vd), Section 3.1.3). The landward point can be

specified in multiple ways: another height point, an X distance landward of the seaward point or, like

in figure 7, the peak of the first dune.

The number of bars present at each location can be determined between the position of the 0 meter

elevation point and a more seaward located point, for example the -10 meter height point. This can

be done by finding the peaks in the profile between these points and count them (Fig. 8, Section

3.1.3). The peaks must meet some conditions to filter some minor (measurement) fluctuations, to

make sure that not every little positive height change in the profile data is considered a bar. For

example, the peaks must be more than 0.5 meter high (can differ between locations) compared to its

landward trough. Furthermore, the locations of the bars with respect to the 0-meter height point

(mean-water line) can be determined (indicated by Dbar, in figure 8). This can be determined by

finding the locations of the bars (like described above) and refer these to the 0 m height point

location.

The distance between the chosen landward boundary of the beach (a height point) and the peak of

the first dune indicates how steep the seaward slope of the dune is. This can be done by finding the

40

location of the foredune peak and the intersection point of the profile with the chosen height line

and determine the distance (indicated by Dd-b in figure 7, Section 3.1.3). Furthermore, the distance

between the peak of the first dune and the mean sea level (0 m elevation) can be determined. To

investigate differences in the distance from the coastline to the first dune.

The height of the foredune (Hd) can be determined by finding the vertical position of the foredune
peak and calculating the vertical distance to the ordnance datum of the defined grid (Fig. 28).

Figure 28: Schematic cross-shore profile indicating the height of the foredune (Hd).

An envelope study can also be done. This envelope describes the area of active morphological

change within a profile over a certain period of time, the active bar zone. This can be determined by

stacking up the yearly measurements. The thickness, length, position and volume of the

morphologically active layer for each profile, taken over a fixed period of time, can indicate

differences in the morphological activity (especially bars) between profiles. Figure 29 is an example

of stacking yearly measurements, made in MorphAn. The grey area in the figure indicates the

envelope.

Figure 29: An example of a plot where different yearly measurements are plotted on top of each other, made with the use of

MorphAn. The grey area indicates the maximum differences between the measurements. This example is from transect

number 1955 in the Noord-Holland coastal area.

41

The effect of nourishments on the characteristics of the profiles can also be determined and

compared to other profiles which are located near similar nourishments. This can be done by

comparing the profile characteristics in the brief period before the nourishment with the

characteristics over the couple of years after the nourishment and determine the difference (the

effect of the nourishment). Thereafter the effect of the nourishments on the different transects can

be compared.

The trends/development of each characteristic at each profile can be determined. This can be done

similar to the volume trend. Furthermore, the trends might be incorporated in the categorization of

the profiles. Where a distinction can be made between profiles with positive and negative trends, for

example. Additionally, the effect of the nourishments on the trends can, and maybe should, be

determined to make sure the ‘natural’ profile state can be compared. Moreover, to indicate

differences in the profile responses at various locations to similar nourishments.

The amount of variation in the characteristics can also be compared. As this gives an indication of

how dynamic a certain part of the coast is. This can be done by comparing the bandwidth around the

mean values.

The categorization can be expanded or done in multiple ways. Firstly, a new categorization can be

done based on other characteristics, like the average amount of bars in the profile or the trends in

the development of each characteristic. But the categorization can also be expanded by adding more

characteristics into the categories, making more detailed categories, although the number of

categories might become too many. Multiple categorizations, with a small number of categories, can

also be done so that each transect falls under a certain category per characteristic. Though, one

should be cautious not to overdo the number of categories, resulting in noncomparable areas due to

too much detail.

More detail can also be added to the existing categorization by including more of the actual mean

slope values to each category. Or by splitting the profiles into smaller areas, which would result into

more accurate schematic profiles linked to each category. Furthermore, the amount of variation in

the slope per transect, visualised in the boxplots, can also be incorporated in the categories. Where a

high variation indicates a highly dynamic profile and vice versa.

Finally, the positions of the isobaths in the profile, relative to the position of the dune peak or mean

water line (z = 0 m) can also be determined. If these positions are known the positions relative to,

distances between and the slope (βpart) between each isobath can be calculated (Fig. 30). From the

βpart the maximum and minimum slope can be determined. Also, when combining the slopes of small

parts of the profile, a schematic representation of the profile can be constructed. Furthermore,

reverse slopes (βL_bar), the landward side of a sandbar, might be calculated to indicate the shape of a

sandbar. Note the potential problems with determining the positions of a depth point, as one depth

can occur at multiple locations in one profile (see Chapter 6).

42

Figure 30: A schematic overview of the positions of isobaths and the different slopes present in a cross-section.

43

6. Uncertainties
In this chapter the possible errors and uncertainties during the calculation of the characteristics are

discussed (Section 6.1). Followed by a list of some remarkable findings and errors in the database, of

which some might lead to miscalculations (Section 6.2).

6.1 Uncertainties during the calculations
Firstly, if a height line intersects with the profile multiple times only one intersection point can be

taken for the calculation of a certain characteristic. For the horizontal intersection lines lower than 0

meter the most landward intersection point is used in the calculation (Fig. 31, left window). While for

the lines of 0 meter and higher the most seaward intersection point was used. This method assumes

that these (most landward and most seaward) intersection points do not occur much more landward

than the coastline, for the lower intersection points, or are positioned far seawards of the coastline,

for the higher intersection points. If this does occur the characteristics are calculated over an

incorrect area, which leads to a false result.

It might occur that the intersection point is “shifted” seaward by the presence of a sandbar (Fig. 31,

right window). Due to this effect, the slope of a part of the profile might seem gentler/steeper

according to the calculations than it was.

Figure 31: A schematic example of a height line which intersects with the profile at multiple positions, indicated is which
intersection point should for a horizontal intersection line lower than 0 meter (left). An example of a seaward “shift” in
cross-shore position of a height point due to the presence of a sandbar (right).

The date on which the measurements are done should be considered. For example: the beach width

and volume are likely dependent on the timing of the measurements. Quartel et al. (2008)

investigated seasonal variability in cross-shore positions of the high-, mean- and low- tide contours

along with the beach width and volume. Furthermore, they studied the dependency on the offshore

wave conditions. At the end of winter after more intense and frequent storm events, the beach was

wide with a small volume, while during summer (with mild wave conditions) the beach became

narrower with a large volume (Quartel et al., 2008). At the beginning of winter, the three contour

lines straightened, simultaneously the dunefoot shifted landwards and the mean low water line

shifted seawards. Consequently, the beach profile became flatter during winter. The gradual

landward migration of the mean low water line, due to a lack of wave breaking, led to the steepening

in summer. Therefore, the timing of the measurements might be crucial, as different measurement

results can occur between measurements done during spring and during summer (generally there

are no measurements done during autumn and winter).

During the calculation of the means and standard deviations of the characteristics the number of

values used to determine the means (and standard deviations) was nonequal for all transects. This

44

was due to unequal amounts of measurements done at each transect, where some were measured

annually for more than 50 years, while others were measured less frequent and not always annually

(see figure 9, Section 3.1.3). Even for the calculation of the means for the period of 2006-2016 the

amount of measurements done is not equal. This might have caused some comparisons between

dissimilar results. Because if there are less values to calculate the mean from, than certain

measurement errors or unique situations have more influence on the result than if the mean is

calculated over more values.

Due to the method of determining the volumes of the +4 & 0 part, a growing, seaward propagating,

dune can cause a decline in the volume. Because, if the 0 meter height point remains at roughly the

same position, while the +4 meter height point migrates seaward due to the accumulating dune.

Then the width of the area over which the volume is calculated declines, resulting in a reduction of

the calculated volume even though no erosion of sediment occurred. This is clarified in figure 32.

Figure 32: Figure indicating the effect of a seaward propagating dune on the calculated beach volume. The dotted black line

indicates the profile after the dune propagation.

The transect profiles angles relative to the coastline were not considered during this project. While

the angle of the transect profile is not always perpendicular to the coastline. This might lead to some

small overestimates of the sediment volume or underestimates of the slope steepness.

Some measuring errors or data structuring errors which were unnoticed (and noticed, which are

stated in the next Section, 6.2) might cause some incorrect results.

6.2 Remarkable findings and errors in the database
- ‘Gaps’ in the profile, when looking at a profile using the ‘side view’ window in MorphAn,

occur when the horizontal distance between two measuring points is larger than 10 meters.

- For the quasi-synoptic data from Sylt the last measurements (one dry and one wet

measurement) of the year were used to make one whole profile. If there were no new

measurements available from that year than the measurements of the previous year were

used. The dry and wet measurements were set together by a linear interpolation. If both

measurements extended to the same position than the dry measurement was used over the

wet measurement.

45

- During this project a few profiles were examined individually with the use of MorphAn, to get

an insight in the data. A couple of these profiles show some errors in the measurement data,

like in the following figure (Fig. 33): zones with a lot of ‘spikes’ (some of which were even

more than 2 meters high) were found. This influences some results of the analyses.

o Examples of profiles which show these profiles on Sylt: year 2000 & 1999. Transect

number: 70154. Also, 2002: 21548 & 2002: 19726 for instance.

Figure 33: Example wrong measurement data.

- There is a backslash in the data from Vlieland (05_vlieland_65-16.jrk). Located in the

following lines (with the use of “ctrl+f” the lines can be found):

710 -275 720 -245 730 -235 999999999999 999999999999 \

5 2001 3300 0 1506 2504 293

This backslash should be removed as it gives errors when loading into MATLAB. This

backslash has been removed by hand for the use of the data in this project.

- The data from coastal area Tannis-Bugt, measured during 2016, has the wrong sign: negative

numbers are positive and vice versa. This must be fixed. This is fixed for the use of the data

during this project and also fixed in the data folder of this project.

46

7. Concluding remarks
With the use of the database, containing data from the different partners within the EU Interreg

project: Building with Nature, a tool to quantify and analyse certain coastal profile characteristics was

made. This tool can be expanded by some additional analyses and calculations of characteristics, like

the development of the characteristics over time or the response to certain nourishments.

Some main findings during the analysis of the results are the slope differences along the North Sea

coast. Where the deeper parts of the shoreface are quite steep along Zeeland, due to the occurrence

of tidal channels. While being very gently sloped for the Wadden islands and large parts along the

Danish coast. Furthermore, the old Rhine deposits can be distinguished, as the alongshore deeper

shoreface slope trend has an arch shape along the coast for coastal areas Delfland, Rijnland and

Noord-Holland. The slopes at Middelkerke are generally gentler than at the other mainland coastal

areas. Also, some other coastal features are reflected in the slope values, like the arches in the

coastline at the VigsoJammerbugten coastal area, which are clearly reflected in the slope of the

deeper shoreface.

Furthermore, when categorizing the transects, it is possible to distribute different areas of the coast

into categories. This analysing technique can be enhanced during future work on this dataset by

including several other characteristics, like the developments over time.

Finally, it should be possible to determine the effect of nourishments on the characteristics of the

profiles, as the BwN project desires to identify differences in nourishment behaviour. This can be

achieved by analysing responses to similar nourishments between different areas. Comparing the

profile characteristics before and after the nourishment will determine the impact of the

nourishment. Subsequently, the effect of the nourishments on the different transects can be

compared.

47

References

Aagaard, T. (2011). Sediment transfer from beach to shoreface: The sediment budget of an accreting

beach on the Danish North Sea Coast. Geomorphology, 135(1-2), 143-157.

Bregman, M. (2017). Transformation of coastal morphological data of Interreg partners to a format

suitable for MorphAn.

Deltares. (2016). MorphAn 1.5.0, Analytical tool for sandy coasts, User manual. The translation of this

manual from Dutch to English was commissioned by Rijkswaterstaat Water, Traffic and the

Environment (WVL), as part of the Interreg VB NSR project “Building with Nature”.

Elias, E. P. L., Van der Spek, A. J. F., Wang, Z. B., & De Ronde, J. (2012). Morphodynamic development

and sediment budget of the Dutch Wadden Sea over the last century. Netherlands Journal of

Geosciences, 91(3), 293-310.

The MathWorks, Inc., Natick, Massachusetts, United States. Statistics and Machine Learning Toolbox,

Release R2017b. Retrieved from https://nl.mathworks.com/help/stats/.

Quartel, S., Kroon, A., & Ruessink, B. G. (2008). Seasonal accretion and erosion patterns of a

microtidal sandy beach. Marine Geology, 250(1), 19–33.

Stouthamer, E., Cohen, K. & Gouw, M. (2010). Avulsion and its Implications for Fluvial-Deltaic

Architecture: Insights from the Holocene Rhine–Meuse Delta. SEPM Special Publication.

Wilmink R.J.A., Lodder Q.J., Sørensen P. (2017). Assessment of the design and behaviour of

nourishments in the North Sea Region. Towards an NSR guideline for nourishments. Coastal Dynamics

2017, paper No. 043.

https://nl.mathworks.com/help/stats/

48

Appendix

1. Tables

1.1 Width and slope
Width and slope variable names used in the structures within the main structure.

Table 11: Width and slope variable names used in the structures within the main structure.

1st height
point (m)

2nd height
point (m)

Width variable name Slope variable name

+4 most
seaward

0 most
seaward

Width_0_plus_4 Slope_0_plus_4

+2 most
seaward

0 most
seaward

Width_0_plus_2 Slope_0_plus_2

+4 most
seaward

-2 most
landward

Width_min_2_plus_4 Slope_min_2_plus_4

+2 most
seaward

-2 most
landward

Width_plus_2_min_2 Slope_plus_2_min_2

0 most
seaward

-2 most
landward

Width_0_min_2 Slope_0_min_2

-2 most
landward

-4 most
landward

Width_min_2_min_4 Slope_min_2_min_4

-2 most
landward

-6 most
landward

Width_min_2_min_6 Slope_min_2_min_6

-2 most
landward

-8 most
landward

Width_min_2_min_8 Slope_min_2_min_8

-4 most
seaward

-8 most
landward

Width_min_4_min_8 Slope_min_4_min_8

1.2 Volume
Table 12: Volume variable names used in the structures within the main structure.

1st height
point (m)

2nd
height
point
(m)

Volume variable
name

Trend volume variable name

+4 most
seaward

0 most
seaward

Vol_0_plus_4 trend_vol_0plus4_2006_2016

+2 most
seaward

0 most
seaward

Vol_0_plus_2 trend_vol_0plus2_2006_2016

+4 most
seaward

-2 most
landward

Vol_min_2_plus_4 trend_vol_min2plus4_2006_2016

+2 most
seaward

-2 most
landward

Vol_plus_2_min_2 trend_vol_plus2min2_2006_2016

-2 most
landward

-4 most
landward

Vol_min_2_min_4 trend_vol_min2min4_2006_2016

-2 most
landward

-6 most
landward

Vol_min_2_min_6 trend_vol_min2min6_2006_2016

-2 most
landward

-8 most
landward

Vol_min_2_min_8 trend_vol_min2min8_2006_2016

49

1.3 Transects
An overview of the correct transect number order from south to north per coastal area. The

transects which were removed as they were located at the island heads, and some other special

cases, are also indicated. The current order column indicates the transect order as how it is saved in

the matlab structures, this column is only filled in if it differs from the south-north order. So, if it is

empty than the order was already from south to north.

Table 13: Table which states the south-north transect order per coastal area. Furthermore, the transects which were

removed from the figures and the reason to remove them are specified.

Coastal
area order
number
from south
to north

Coastal area
name

Current
order

South-North
(and W-E)
order

Removed transects:
Island heads (transect
numbers), and other
special cases

Special notes

1 Middelkerke
(actually four
coastal areas but
treated as one)

- 74 – 78.5
79 – 82.5
83 – 87.5
88 – 92.5

 Coastal areas 12-
15:
Westende-Bad
De krokodille
Middelkerke-Bad
Middelkerke-Oost

2 Zeeuws-
Vlaanderen

11 – 1487 1487 – 11

3 Walcheren 540 – 3750 3750 – 540 3750-3526 is the
southern end of
Walcheren along the
hard structure at the
harbour of Vlissingen

4 Noord-Beveland 0 – 520 520 – 0 100 – 0 lie behind the
“Oosterscheldekering”

5 Schouwen 68 – 1800 1800 – 68

6 Goeree 280 – 2525 2525 – 280

7 Voorne 400 – 1830 1830 – 400

8 Delfland 9740 –
11850

11850 –
9740

9 Rijnland 5625 –
9725

9725 – 5625

10 Noord-Holland 0 – 5500 5500 – 0

11 Texel - 416 – 3452 416 – 860 southern
island head.
2937 – 3211 northern
island head.
3212 – 3452 behind
the island (Wadden
Sea side).

12 Vlieland - 3300 – 5460 3300 – 4060 southern
(western) island head.
5367 – 5460 northern
(eastern) island head.

13 Terschelling - 0 - 3004 5916 – 5902 single
point with multiple
transects.

5902 – 5916 is
one extra
transect on the

50

0 – 540 southern
(western) island head.
2660 – 3004 northern
(eastern) island head.

south of the
island: not
analysed

14 Ameland - 100 - 2516 4600 – 4966 behind
the island (south-west
side).
100 – 440 western
island head.
2160 – 2516 eastern
island head.

4600 – 4966 are
transects on the
Wadden Sea side
of the island

15 Schiermonnikoo
g

- 100 – 1618 100 – 520 western
island head.
1440 – 1618 eastern
island head.

16 Baltrum - 73-75-77 Only 3 transects
and all are on the
eastern island
head.

17 Langeoog - 1 – 87 1 – 35 western island
head.
80 – 87 eastern island
head.

18 Sylt 5 – 22722
50045 –
71872
Not
analysed:
1006233 –
1006333

1016124 –
1022848

1049855 -
1070404

71872 –
50045

5 – 22722

1020255 –
1022848
(not
analysed)

71872 – 69789 behind
the island (Wadden
Sea side).

69739 – 67387
southern island head.

16462 – 22722
northern island head.

1020255 - 1022848
are located on the
north-east point of the
island.

1049855 - 1070404
Some randomly
located transects and
others from the south
point of the island.

19 Vadehavsoer - 6970 – 6280 6970 – 6950 southern
island head of Rømø.
6850 – 6820 northern
island head of Rømø.
6810 – 6680 in
between islands.

51

6680 – 6510 island of
Fanø.

6500 – 6460 in
between islands.

6440 – 6450 south
point of Skallingen

20 Holmsland 4010000 -
4021000

4010000 –
4021000

 Holmsland is a
‘close-up’ to a
part within
Midtjylland,
where the
transects are
closer spaced

21 Midtjylland - 6270 – 4210

22 Agger - 4170 – 4010

23 Nationalpark -
Thy

- 3670 – 3060

24 VigsoJammerbu
gten

- 3050 – 1510

25 Tannis-Bugt - 1500 – 1060

At the far north point
of Denmark, near
Skagen, there is an arc
of transects which fall
out of order,
transects: 1010 - 1050

52

2. Figures

2.1 Overview figures
Some extra figures which were made (Appendix figures 1-4). Along with a table which indicate which

value ranges were plotted in what colour in the standard deviation figures.

Table 14: Table indicating which value ranges are plotted in which colour per characteristic, for the Appendix figures 4 and 5.

+4 & 0 Stdv slope
range (1/xx)

Colour +2 & -2 Stdv slope
range (1/xx)

Colour

0 – 6 Red 0 – 6 Red

6 – 12 Magenta 6 – 12 Magenta

12 – 18 Blue 12 – 18 Blue

18 – 24 Cyan 18 – 24 Cyan

24 – 30 Green 24 – 30 Green

30+ Yellow 30+ Yellow

-2 & -4 Stdv slope
range
(1/xx)

Colour -4 & -8 Stdv slope
range
(1/xx)

Colour

0 – 10 Red 0 – 10 Red

10 – 25 Magenta 10 – 20 Magenta

25 – 40 Blue 20 – 30 Blue

40 – 55 Cyan 30 – 40 Cyan

55+ Green 40+ Green

- Yellow - Yellow

2.2 Boxplots
The boxplots were made with the use of the MATLAB boxplot fuction within the

Plotting_Slope2Mean_noheads_boxplot.m script (not shown in the Appendix but it is located within

the project folder). In the beginning of the script the coastal area and slope variable which will be

plotted can be selected basen on the given numbers to the following variables: Areanumber and

plotted_characteristic. The boxplots were made for the mean slope values for the small parts of the

profiles.

53

Figure 34: Figure indicating the mean widths over the whole measurement history along the North Sea coast, from south to north. The coastal areas are divided by the vertical dashed lines and the names are shown in

the top of the figure. The colours are based on the values stated in Table 7. The horizontal green line, per coastal area indicates the mean of the mean widths of that coastal area. And the two horizontal black lines

indicate the distance of 2 times standard deviation from the mean.

54

Figure 35: Figure indicating the mean widths over the period 2006-2016 along the North Sea coast, from south to north. The coastal areas are divided by the vertical dashed lines and the names are shown in the top of the

figure. The colours are based on the values stated in Table 7. The horizontal green line, per coastal area indicates the mean of the mean widths of that coastal area. And the two horizontal black lines indicate the distance of

2 times standard deviation from the mean.

55

Figure 3: Figure indicating the standard deviation of the slopes over the whole measurement history along the North Sea coast, from south to north. The coastal areas are divided by the vertical dashed lines and the

names are shown in the top of the figure. The colours are based on the values stated in Appendix Table 4. The horizontal green line, per coastal area indicates the mean of the standard deviation of the slopes of that

coastal area. And the two horizontal black lines indicate the distance of 2 times standard deviation from the mean.

56

Figure 4: Figure indicating the standard deviation of the slopes over the period 2006-20016 along the North Sea coast, from south to north. The coastal areas are divided by the vertical dashed lines and the names are

shown in the top of the figure. The colours are based on the values stated in Appendix Table 4. The horizontal green line, per coastal area indicates the mean of the standard deviation of the slopes of that coastal area.

And the two horizontal black lines indicate the distance of 2 times standard deviation from the mean.

57

3. Scripts

3.1 Changing coastal area numbers
For some coastal areas a separate script has been made due to some differences in the data. The

Danish measurements are also split-up into 6 coastal areas in the

Omzetten_kv_num_jrk_files_Vestkyst.m script based on the chosen transect numbers (should be

changed in the beginning of the script). Note: also for both the data from Middelkerke and

Baltrum/Langeoog slightly different scripts are made, to handle the little variations in these datasets

compared to the other, but those are not presented here.

Script 1: Omzetten_kv_num_jrk_files.m

%% Changing the Coastal area numbers in de jarkus files to the newly used numbers
% Ivo Naus

%% initialization
close all
clear all

tic
%% *************** Setting new number ************************************

% Important to set the new coastal area number value, the correct input
% file and the correct new file name.

new_kv_num = 49260040; % change this number

% Change the input file
input_file = 'C:\Users\ivo\Documents\1 . Rijkswaterstaat stage\Werkmap\Matlab\Ivo

scripts\Omzetten kustvaknummers\Oude nummers\test.jrk';

newfile_name = 'test.txt'; % change this name

%% load jrk file % Set new file name

open_file = fopen(input_file);

% new file
newfile = fopen(newfile_name,'wt');

%% read the jrk file line by line and change the coastal area number

oneline = fgetl(open_file); % read first line
while ischar(oneline)
 x = str2num(oneline);
 x2 = num2cell(x);
 if length(x) == 7 & x(7) ~= 9999 & x(7) ~= 99999 & x(7) ~= 999999 & x(7) ~= 9999999 & x(7)

~= 99999999 & x(7) ~= 999999999 & x(7) ~= 9999999999 & x(7) ~= 99999999999 & x(7) ~=

999999999999 & x(7) ~= 9999999999999 & x(7) ~= 99999999999999 & x(7) ~= 999999999999999 & x(7)

~= 9999999999999999 & x(7) ~= 99999999999999999 & x(7) ~= 999999999999999999 & x(7) ~=

9999999999999999999 & x(7) ~= 99999999999999999999
 % the length of the headline of each measurement
 x(1) = new_kv_num; % change the coastal area number, which is in the first column of

a headline
 fprintf(newfile,'%s\n', num2str(x)); % print a new line in the new file with the

updated number
 elseif length(x) == 10 || length(x) == 8 || length(x) == 6 || length(x) == 4 || length(x)

== 2
 if length(x) == 10 % Check the length of a data line (lengths can be 2, 4, 6, 8

and 10)
 for i = 1:(length(x)/2) % This only happens for the Y values
 if length(num2str(x(i*2))) == 1 % as the last number of the y values indicate

the type of measurement
 x2{i*2} = ['0', num2str(x(i*2))]; % If there is only one number than the

actual y value was '0'
 end

58

 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ', ...
 num2str(x2{4}),' ', num2str(x2{5}),' ', num2str(x2{6}),...
 ' ', num2str(x2{7}),' ', num2str(x2{8}),' ', num2str(x2{9}),...
 ' ', num2str(x2{10})]; % Make the new line correct
 elseif length(x) == 8
 for i = 1:(length(x)/2)
 if length(num2str(x(i*2))) == 1
 x2{i*2} = ['0', num2str(x(i*2))];
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ', ...
 num2str(x2{4}),' ', num2str(x2{5}),' ', num2str(x2{6}),...
 ' ', num2str(x2{7}),' ', num2str(x2{8})];
 elseif length(x) == 6
 for i = 1:(length(x)/2)
 if length(num2str(x(i*2))) == 1
 x2{i*2} = ['0', num2str(x(i*2))];
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ', ...
 num2str(x2{4}),' ', num2str(x2{5}),' ', num2str(x2{6})];
 elseif length(x) == 4
 for i = 1:(length(x)/2)
 if length(num2str(x(i*2))) == 1
 x2{i*2} = ['0', num2str(x(i*2))];
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ', ...
 num2str(x2{4})];
 elseif length(x) == 2
 if length(num2str(x(2))) == 1
 x2{2} = ['0', num2str(x(2))];
 end
 x = [num2str(x2{1}),' ', num2str(x2{2})];
 end
 fprintf(newfile,'%s\n', x); % print a new line as the old line. NOTE: if a y value
 % was 0#, it is converted to # as the str2num makes it num (eating
 % the leading zero's). This part reflects if this happened and
 % returns '0#' to the correct locations if it happened
 else
 fprintf(newfile,'%s\n', num2str(x(1:(end-1))));
 end
 %disp(oneline)
 oneline = fgetl(open_file); % Set the next line in the original file to be read next
end
fclose(open_file);
fclose(newfile);

%% elapse time
toc

Script 2: Omzetten_kv_num_jrk_files_Vestkyst.m

%% Changing the Coastal area numbers in de jarkus files to the newly used numbers
% Ivo Naus

%% initialization
close all
clear all

tic
%% *************** Setting new number ************************************

% Important to set the new coastal area number value, the correct input
% file and the correct new file name.

new_kv_num = 45000006; % change this number

59

% change the input file
input_file = 'C:\Users\ivo\Documents\1 . Rijkswaterstaat stage\Werkmap\Matlab\Ivo

scripts\Omzetten kustvaknummers\Oude nummers\Vestkyst_complete2.jrk';

% change this name
newfile_name = '45000006_Vestkyst_TannisBugt.txt';

% chose the transect range which should be taken
lower_transect_ID_number = 1010;

upper_transect_ID_number = 1500;

%% load jrk file % Set new file name

open_file = fopen(input_file);

% new file
newfile = fopen(newfile_name,'wt');

%% read the jrk file line by line and change the coastal area number

oneline = fgetl(open_file); % read first line
while ischar(oneline)
 x = str2num(oneline);
 x2 = num2cell(x);
 if length(x) == 7 && x(3) >= lower_transect_ID_number && x(3) <= upper_transect_ID_number

&& x(7) ~= 9999
 % the length of the headline of each measurement
 x(1) = new_kv_num; % change the coastal area number, which is in the first column of

a headline
 fprintf(newfile,'%s\n', num2str(x)); % print a new line in the new file with the

updated number

 oneline = fgetl(open_file); % Set the next line in the original file to be read next

 while ischar(oneline) && length(str2num(oneline)) ~= 7
 x = str2num(oneline);
 x2 = num2cell(x);
 if length(x) == 10 || length(x) == 8 || length(x) == 6 || length(x) == 4 ||

length(x) == 2
 if length(x) == 10 % Check the length of a data line (lengths can be 2,

4, 6, 8 and 10)
 for i = 1:(length(x)/2) % This only happens for the Y values
 if length(num2str(x(i*2))) == 1 % as the last number of the y values

indicate the type of measurement
 x2{i*2} = ['0', num2str(x(i*2))]; % If there is only one number

than the actual y value was '0'
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ',

...
 num2str(x2{4}),' ', num2str(x2{5}),' ', num2str(x2{6}),...
 ' ', num2str(x2{7}),' ', num2str(x2{8}),' ', num2str(x2{9}),...
 ' ', num2str(x2{10})]; % Make the new line correct
 elseif length(x) == 8
 for i = 1:(length(x)/2)
 if length(num2str(x(i*2))) == 1
 x2{i*2} = ['0', num2str(x(i*2))];
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ',

...
 num2str(x2{4}),' ', num2str(x2{5}),' ', num2str(x2{6}),...
 ' ', num2str(x2{7}),' ', num2str(x2{8})];
 elseif length(x) == 6
 for i = 1:(length(x)/2)
 if length(num2str(x(i*2))) == 1
 x2{i*2} = ['0', num2str(x(i*2))];
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ',

...
 num2str(x2{4}),' ', num2str(x2{5}),' ', num2str(x2{6})];
 elseif length(x) == 4

60

 for i = 1:(length(x)/2)
 if length(num2str(x(i*2))) == 1
 x2{i*2} = ['0', num2str(x(i*2))];
 end
 end
 x = [num2str(x2{1}),' ', num2str(x2{2}),' ', num2str(x2{3}), ' ',

...
 num2str(x2{4})];
 elseif length(x) == 2
 if length(num2str(x(2))) == 1
 x2{2} = ['0', num2str(x(2))];
 end
 x = [num2str(x2{1}),' ', num2str(x2{2})];
 end

 fprintf(newfile,'%s\n', x); % print a new line as the old line. NOTE: if a y

value
 % was 0#, it is converted to # as the str2num makes it num (eating
 % the leading zero's). This part reflects if this happened and
 % returns '0#' to the correct locations if it happened
 end
 oneline = fgetl(open_file); % Set the next line in the original file to be read

next
 end
 else
 oneline = fgetl(open_file); % Set the next line in the original file to be read next
 end
end
fclose(open_file);
fclose(newfile);

%% elapse time
toc

3.2 Converting JARKUS to MATLAB structure
The load_jarkus script converts the JARKUS structure data to a MATLAB structure data. When using

this script, the dir_in variable should be changed to the directory in which the user has saved the

*.jrk files. Furthermore, the script saves the data structures in the ‘Data_structs’ output folder. It

scans trough the lines of the *.jrk files which are located in the directory. The script makes use of the

GET_X_Y function, which extracts the x and y values from the current data line and removes the last

digit from the y value.

Script 3: Load_jarkus.m

%% Converting Jarkus file structure to a useable structure in matlab
% Ivo Naus

%% initialization
close all
clear all

tic

%% Adding paths

addpath('Functions','Data_jrk');

%% Automatically load files in the dir_in directory and convert to new structure

% the directory where the .jrk files are located
dir_in = 'C:\Users\ivo\Documents\1 . Rijkswaterstaat stage\Werkmap\Matlab\Ivo

scripts\Better\Load jarkus\Data_jrk\';

61

files = dir([dir_in,'*.jrk']);

% loop over all the files in the directory
for k = 1:length(files)
 % automatically generate output file name based on input file name
 inputfile = files(k).name;
 savestruct_name = files(k).name(1:end-4);

 open_file = fopen(inputfile);

 % generating a base struct (structure) layout for the data
 Data =

struct('x',[],'y',[],'transect',[],'year',[],'num_of_points',[],'coastal_area_number',[]);

%% Initialisation
 oneline = fgetl(open_file); % read first line

 n = 0; % used to scroll down in the struct (to the next measurement)

 %% filling in the data and metadata in the structure
 while ischar(oneline)

 split_line_first = strsplit(oneline); % split the line into cells

 if isempty(oneline)
 split_line = split_line_first;
 elseif oneline(1) == ' ' % otherwise the first cell is empty,

which gives an error
 split_line_second = split_line_first(2:end);
 if isempty(split_line_second{end})
 split_line = split_line_second(1:end-1);
 else
 split_line = split_line_second;
 end
 else
 split_line_second = split_line_first;
 if isempty(split_line_second{end})
 split_line = split_line_second(1:end-1);
 else
 split_line = split_line_second;
 end
 end

 if isempty(oneline) % skip an empty line
 oneline = fgetl(open_file); % Set the next line in the original file to be read

next
 % Check if the line is a headline: metadata lines contain 7
 % collums, some data lines also contain 7 collumns as sometimes
 % they are filled with '9999'
 elseif length(split_line) == 7 && str2double(split_line{end}) < 9999

 % Getting the metadata from the line, later to be saved to the
 % structure
 coast_area_num = str2double(split_line{1});
 year = str2double(split_line{2});
 transect = str2double(split_line{3});
 meas_type = str2double(split_line{4});
 dry_date = str2double(split_line{5});
 wet_date = str2double(split_line{6});
 num_of_data_points = str2double(split_line{7});

 n = n+1; % to scroll down in the struct

 % storing the metadata of the new measurement & storing the x and y data of the

old measurement
 if n == 1 % first measurement of the data: storing the metadata
 Data(1).transect = transect;
 Data(1).year = year;
 Data(1).num_of_points = num_of_data_points;
 Data(1).coastal_area_number = coast_area_num;
 else
 % storing the x and y data of the old measurement
 % and storing the metadata of the new measurement

62

 Data(n-1).x = x;
 Data(n-1).y = y;

 % In case there are more datapoints in the data than there were
 % measured. (i.e. if the data is filled with 9999999 at the
 % end)
 % Than: do not copy these 'false' points into the new structure
 if length(Data(n-1).x) - Data(n-1).num_of_points > 0
 Data(n-1).x = Data(n-1).x(1:end-(length(Data(n-1).x) - Data(n-

1).num_of_points));
 Data(n-1).y = Data(n-1).y(1:end-(length(Data(n-1).y) - Data(n-

1).num_of_points));
 end

 Data(n).transect = transect;
 Data(n).year = year;
 Data(n).num_of_points = num_of_data_points;
 Data(n).coastal_area_number = coast_area_num;
 end

 % empty x and y for the new measurement
 x = [];
 y = [];

 oneline = fgetl(open_file); % Set the next line in the original file to be read

next
 elseif length(split_line) == 10
 % adding to the x and y arrays
 [x, y] = GET_X_Y(split_line,x,y);

 oneline = fgetl(open_file); % Set the next line in the original file to be read

next
 else % when the number of collumns is not 10 or 7, which is only the case when it is

the last row of the data
 % adding to the x and y arrays
 [x, y] = GET_X_Y(split_line,x,y);

 oneline = fgetl(open_file); % Set the next line in the original file to be read

next
 while ischar(oneline) && length(strsplit(oneline)) ~= 7 % in case a metadata line

is incorrect (which leads to wrong results of this script)
 oneline = fgetl(open_file); % Set the next line in the original file to be

read next
 end
 end
 end

 % storing the x and y values of the last measurement
 Data(n).x = x;
 Data(n).y = y;

 %% Data saving

 save(['Data_structs\',savestruct_name,'.mat'],'Data');
end

toc

Script 4: change_tannis_bugt.m

%% Change data 2016 tannis bugt by multimpling by (-1)
% Ivo Naus

%% initialization
close all
clear all

63

tic

%% Adding paths

addpath('Functions','Data_structs');

%% automatisch bestanden in de betreffende directory inladen en wegschrijven

load('45000006_Vestkyst_TannisBugt.mat')

for k = 1:length(Data)
 if Data(k).year == 2016
 Data(k).y = Data(k).y * (-1);
 end
end

%% Data saving

save(['Data_structs\','45000006_Vestkyst_TannisBugt_2','.mat'],'Data');

toc

3.3 Calculating intersection points

Script 5: Calculate_intersection_points.m

%% get the intersection points of all the profiles with a certain height line
% Ivo Naus 2017, RWS WVL

clear all
close all

tic

addpath('Functions','Data_structs');

%% Automatically load files in the dir_in directory, and set a name for the resulting

structure
dir_in = 'C:\Users\ivo\Documents\1 . Rijkswaterstaat stage\Werkmap\Matlab\Ivo

scripts\Beter\Calculating Characteristics\Data_structs\';
files = dir([dir_in,'*.mat']);

% name of the saved file
save_struct_name_file = 'intersection_points';

save_struct_name = 'intersection_points';

%% Variables used

% heigt of horizontal line (intersection):
inter_height_zero = 0;
inter_height_min_2 = -2;
inter_height_plus_2 = 2;
inter_height_plus_4 = 4;
inter_height_min_6 = -6;
inter_height_min_8 = -8;
inter_height_min_4 = -4;

64

%% A loop over all the files within the directiory chosen as the dir_in variable

for k = 1:length(files)

 inputfile = files(k).name;

 load = load(inputfile);

 MakeCell = struct2cell(load);

 data = cell2struct(MakeCell, inputfile(1:end-4));

 % making a structure within the structure for every coastal area
 intersection_points.(inputfile(1:end-4)) =

struct('transect',[],'year',[],'coastal_area_number',[],'num_of_points',[],'x_is_0',[]);

 length_loop = length(data.(inputfile(1:end-4)));

 for i = 1:length_loop

 intersection_points.(inputfile(1:end-4))(i).transect = data.(inputfile(1:end-

4))(i).transect;
 intersection_points.(inputfile(1:end-4))(i).year = data.(inputfile(1:end-4))(i).year;
 intersection_points.(inputfile(1:end-4))(i).coastal_area_number =

data.(inputfile(1:end-4))(i).coastal_area_number;
 intersection_points.(inputfile(1:end-4))(i).num_of_points = data.(inputfile(1:end-

4))(i).num_of_points;

 % determine the intersection points with the horizontal line at a
 % height of 0 m
 Intersection_zero = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_zero inter_height_zero]]);

 % save the intersection point in the structure
 intersection_points.(inputfile(1:end-4))(i).x_is_0 = Intersection_zero;

 end

 %% Determine intersection point with y=-2

 intersection_points.(inputfile(1:end-4))(1).x_is_min_2 = [];

 for i = 1:length_loop

 Intersection_min_2 = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_min_2 inter_height_min_2]]);

 intersection_points.(inputfile(1:end-4))(i).x_is_min_2 = Intersection_min_2;

 end

 %% Determine intersection point with y=2

 intersection_points.(inputfile(1:end-4))(1).x_is_plus_2 = [];

 for i = 1:length(data.(inputfile(1:end-4)))

 Intersection_plus_2 = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_plus_2 inter_height_plus_2]]);

 intersection_points.(inputfile(1:end-4))(i).x_is_plus_2 = Intersection_plus_2;

 end

65

 %% Determine intersection point with y=4

 intersection_points.(inputfile(1:end-4))(1).x_is_plus_4 = [];

 for i = 1:length(data.(inputfile(1:end-4)))

 Intersection_plus_4 = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_plus_4 inter_height_plus_4]]);

 intersection_points.(inputfile(1:end-4))(i).x_is_plus_4 = Intersection_plus_4;

 end

 %% Determine intersection point with y=-6

 intersection_points.(inputfile(1:end-4))(1).x_is_min_6 = [];

 for i = 1:length(data.(inputfile(1:end-4)))

 Intersection_min_6 = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_min_6 inter_height_min_6]]);

 intersection_points.(inputfile(1:end-4))(i).x_is_min_6 = Intersection_min_6;

 end

 %% Determine intersection point with y=-8

 intersection_points.(inputfile(1:end-4))(1).x_is_min_8 = [];

 for i = 1:length(data.(inputfile(1:end-4)))

 Intersection_min_8 = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_min_8 inter_height_min_8]]);

 intersection_points.(inputfile(1:end-4))(i).x_is_min_8 = Intersection_min_8;

 end

 %% Determine intersection point with y=-4

 intersection_points.(inputfile(1:end-4))(1).x_is_min_4 = [];

 for i = 1:length(data.(inputfile(1:end-4)))

 Intersection_min_4 = InterX([data.(inputfile(1:end-4))(i).x';data.(inputfile(1:end-

4))(i).y'],[[data.(inputfile(1:end-4))(i).x(1) data.(inputfile(1:end-

4))(i).x(end)];[inter_height_min_4 inter_height_min_4]]);

 intersection_points.(inputfile(1:end-4))(i).x_is_min_4 = Intersection_min_4;

 end

 clear load
end

%% Save data

save(['Output\',save_struct_name_file,'.mat'],save_struct_name);

toc

66

3.4 Calculating the widths and slopes
The widths were calculated with the Width_diff_years_final script. This stands for the calculation of

the width, using a different year for the Danish coastal areas to get the transects of which the mean

was determined (described in Chapter 3) and this script was the last version which was used in this

project. All the indices of the transects which were measured during a certain year were found using

the GetStructIndex function, which searched through the whole structure to find the matching

transect number and/or year. With the use of the calculated widths the slopes were determined in

the Slope_final script.

Script 6: Width_diff_years_final.m

%% Calculation of the distance between certain height points of each profile
% Ivo Naus

clear all
close all

tic

%% load data

addpath('Functions','Data_structs','Characteristics');

intersection_points = load('intersection_points2.mat');

data_name = fieldnames(intersection_points); % Get the name of the loaded struct (field 1 in

struct 'Data')
intersection_points = getfield(intersection_points, data_name{1}); % Change 'Data' to the

loaded struct (not a struct within a struct anymore

% save file names

save_struct_name_file = 'Widths2';

save_struct_name = 'Widths';

save_struct_name_file_2 = 'MeanWidths2';

save_struct_name_2 = 'MeanWidths';

%% Determine the distance (width) between two elevation points

FieldNames = fieldnames(intersection_points);

for k = 1:length(FieldNames)

 % Structure in which the widths will be saved

 Widths.(FieldNames{k}) =

struct('transect',[],'year',[],'coastal_area_number',[],'num_of_points',[],...

'Width_min_2_plus_4',[],'Width_0_plus_2',[],'Width_0_plus_4',[],'Width_min_2_min_6',[],...

'Width_min_2_min_8',[],'Width_plus_2_min_2',[],'Width_min_2_min_4',[],'Width_min_4_min_8',[],'

Width_0_min_2',[]);

 length_loop = length(intersection_points.(FieldNames{k}));

67

 for i = 1:length_loop

 Widths.(FieldNames{k})(i).transect = intersection_points.(FieldNames{k})(i).transect;
 Widths.(FieldNames{k})(i).year = intersection_points.(FieldNames{k})(i).year;
 Widths.(FieldNames{k})(i).coastal_area_number =

intersection_points.(FieldNames{k})(i).coastal_area_number;
 Widths.(FieldNames{k})(i).num_of_points =

intersection_points.(FieldNames{k})(i).num_of_points;

 end

 for n = 1:length_loop
 % calculating the distances between 2 height points
 if isempty(intersection_points.(FieldNames{k})(n).x_is_min_2) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_plus_4)
 Width1 = [];
 else
 Width1 = intersection_points.(FieldNames{k})(n).x_is_min_2(1,1)-

intersection_points.(FieldNames{k})(n).x_is_plus_4(1,end);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_0) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_plus_2)
 Width2 = [];
 else
 Width2 = intersection_points.(FieldNames{k})(n).x_is_0(1,end)-

intersection_points.(FieldNames{k})(n).x_is_plus_2(1,end);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_0) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_plus_4)
 Width3 = [];
 else
 Width3 = intersection_points.(FieldNames{k})(n).x_is_0(1,end)-

intersection_points.(FieldNames{k})(n).x_is_plus_4(1,end);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_min_2) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_min_6)
 Width4 = [];
 else
 Width4 = intersection_points.(FieldNames{k})(n).x_is_min_6(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_2(1,1);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_min_2) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_min_8)
 Width5 = [];
 else
 Width5 = intersection_points.(FieldNames{k})(n).x_is_min_8(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_2(1,1);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_min_2) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_plus_2)
 Width6 = [];
 else
 Width6 = intersection_points.(FieldNames{k})(n).x_is_min_2(1,1)-

intersection_points.(FieldNames{k})(n).x_is_plus_2(1,end);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_min_4) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_min_2)
 Width7 = [];
 else

68

 Width7 = intersection_points.(FieldNames{k})(n).x_is_min_4(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_2(1,1);
 end

 % calculating the distance between -4 and -8, if the distance was
 % negative than take the next -4 point untill it is not negative,
 % or until 5 points have been skipped which almost certainly can
 % only be due to measurement errors
 if isempty(intersection_points.(FieldNames{k})(n).x_is_min_4) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_min_8)
 Width8 = [];
 elseif (intersection_points.(FieldNames{k})(n).x_is_min_8(1,1) -

intersection_points.(FieldNames{k})(n).x_is_min_4(1,end)) < 0
 if length(intersection_points.(FieldNames{k})(n).x_is_min_4(1,:)) > 1
 if (intersection_points.(FieldNames{k})(n).x_is_min_8(1,1) -

intersection_points.(FieldNames{k})(n).x_is_min_4(1,(end-1))) < 0
 if length(intersection_points.(FieldNames{k})(n).x_is_min_4(1,:)) > 2
 if (intersection_points.(FieldNames{k})(n).x_is_min_8(1,1) -

intersection_points.(FieldNames{k})(n).x_is_min_4(1,(end-2))) < 0
 if length(intersection_points.(FieldNames{k})(n).x_is_min_4(1,:))

> 3
 if (intersection_points.(FieldNames{k})(n).x_is_min_8(1,1) -

intersection_points.(FieldNames{k})(n).x_is_min_4(1,(end-3))) < 0
 if

length(intersection_points.(FieldNames{k})(n).x_is_min_4(1,:)) > 4
 if

(intersection_points.(FieldNames{k})(n).x_is_min_8(1,1) -

intersection_points.(FieldNames{k})(n).x_is_min_4(1,(end-4))) < 0
 if

length(intersection_points.(FieldNames{k})(n).x_is_min_4(1,:)) > 5
 Width8 = [];
 else
 Width8 = [];
 end
 else
 Width8 =

intersection_points.(FieldNames{k})(n).x_is_min_8(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_4(1,end-4);
 end
 else
 Width8 = [];
 end
 else
 Width8 =

intersection_points.(FieldNames{k})(n).x_is_min_8(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_4(1,end-3);
 end
 else
 Width8 = [];
 end
 else
 Width8 = intersection_points.(FieldNames{k})(n).x_is_min_8(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_4(1,end-2);
 end
 else
 Width8 = [];
 end
 else
 Width8 = intersection_points.(FieldNames{k})(n).x_is_min_8(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_4(1,end-1);
 end
 else
 Width8 = [];
 end
 else
 Width8 = intersection_points.(FieldNames{k})(n).x_is_min_8(1,1)-

intersection_points.(FieldNames{k})(n).x_is_min_4(1,end);
 end

 if isempty(intersection_points.(FieldNames{k})(n).x_is_0) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_min_2)
 Width9 = [];
 elseif isempty(intersection_points.(FieldNames{k})(n).x_is_0) ||

isempty(intersection_points.(FieldNames{k})(n).x_is_min_2) < 0
 Width9 = [];
 else

69

 Width9 = intersection_points.(FieldNames{k})(n).x_is_min_2(1,1)-

intersection_points.(FieldNames{k})(n).x_is_0(1,end);
 end

 % Saving the widths in the structure

 if isempty(Width1)
 Widths.(FieldNames{k})(n).Width_min_2_plus_4 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_min_2_plus_4 = Width1;
 end

 if isempty(Width2)
 Widths.(FieldNames{k})(n).Width_0_plus_2 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_0_plus_2 = Width2;
 end

 if isempty(Width3)
 Widths.(FieldNames{k})(n).Width_0_plus_4 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_0_plus_4 = Width3;
 end

 if isempty(Width4)
 Widths.(FieldNames{k})(n).Width_min_2_min_6 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_min_2_min_6 = Width4;
 end

 if isempty(Width5)
 Widths.(FieldNames{k})(n).Width_min_2_min_8 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_min_2_min_8 = Width5;
 end

 if isempty(Width6)
 Widths.(FieldNames{k})(n).Width_plus_2_min_2 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_plus_2_min_2 = Width6;
 end

 if isempty(Width7)
 Widths.(FieldNames{k})(n).Width_min_2_min_4 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_min_2_min_4 = Width7;
 end

 if isempty(Width8)
 Widths.(FieldNames{k})(n).Width_min_4_min_8 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_min_4_min_8 = Width8;
 end

 if isempty(Width9)
 Widths.(FieldNames{k})(n).Width_0_min_2 = NaN;
 else
 Widths.(FieldNames{k})(n).Width_0_min_2 = Width9;
 end

 end

 %% Make a struct with the indices of each year for each transect which is measured in the

past
 % and one for those only measured in 2016
 % Determine the mean and standard deviation of the widths calculated
 % for theses specific measurements
 MeanWidths.(FieldNames{k}) =

struct('transect',[],'years',[],'indexdata',[],'mean_width_min2plus4', [],...
 'mean_width_0plus4',[],'mean_width_0plus2',[],'mean_width_min2min6',[],...

70

 'mean_width_min2min8',[],'mean_width_plus2min2',[],'mean_width_min2min4',[],...

'mean_width_min4min8',[],'mean_width_0min2',[],'mean_width_min2plus4_2006_2016',[],'mean_width

_0plus4_2006_2016',[],...
 'mean_width_0plus2_2006_2016',[],'mean_width_min2min6_2006_2016',[]...

,'mean_width_min2min8_2006_2016',[],'mean_width_plus2min2_2006_2016',[],'mean_width_min2min4_2

006_2016',[]...
 ,'mean_width_min4min8_2006_2016',[],'mean_width_0min2_2006_2016',[]...

,'stdv_width_min2plus4',[],'stdv_width_0plus4',[],'stdv_width_0plus2',[],'stdv_width_min2min6'

,[],...
 'stdv_width_min2min8',[],'stdv_width_plus2min2',[],...
 'stdv_width_min2min4',[],'stdv_width_min4min8',[],'stdv_width_0min2',[]...
 ,'stdv_width_min2plus4_2006_2016',[],'stdv_width_0plus4_2006_2016',[],...

'stdv_width_0plus2_2006_2016',[],'stdv_width_min2min6_2006_2016',[],'stdv_width_min2min8_2006_

2016',...
 [],'stdv_width_plus2min2_2006_2016',[],'stdv_width_min2min4_2006_2016',[]...
 ,'stdv_width_min4min8_2006_2016',[],'stdv_width_0min2_2006_2016',[]);

 % To get all the widths (throughout the years) of one transect, the
 % index numbers on which these widths are saved in the structure, for that specific
 % transect, have to be known. The function GetStructIndex does this for
 % all measurements measured for a given year. It has been decided to
 % use only all the transects which were measured during the same year.

 % Get the index of each transect which was measured in 2016, except for
 % the coastal areas in denmark, as a lot of transects weren't measured
 % in 2016 a different year has been taken for each coastal area, based
 % on the amount of transects measured during that year:
 % Vadehavsoer: 2014
 % Midtjylland: 2014
 % Agger: 2016 is good
 % Nationalpark-thy: 2009
 % VigsoJammerbugten: 1995
 % Tannis-Bugt: 2008
 % Holmsland: 2014
 if length((FieldNames{k})) == length('Vestkyst_Vadehavsoer2_45000001') & (FieldNames{k})

== 'Vestkyst_Vadehavsoer2_45000001'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2014, []);
 elseif length((FieldNames{k})) == length('Vestkyst_Midtjylland_45000002') &

(FieldNames{k}) == 'Vestkyst_Midtjylland_45000002'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2014, []);
 elseif length((FieldNames{k})) == length('Vestkyst_Agger_45000003') & (FieldNames{k}) ==

'Vestkyst_Agger_45000003'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2016, []);
 elseif length((FieldNames{k})) == length('Vestkyst_NationalparkThy_45000004') &

(FieldNames{k}) == 'Vestkyst_NationalparkThy_45000004'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2009, []);
 elseif length((FieldNames{k})) == length('Vestkyst_VigsoJammerbugten_45000005') &

(FieldNames{k}) == 'Vestkyst_VigsoJammerbugten_45000005'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 1995, []);
 elseif length((FieldNames{k})) == length('Vestkyst_TannisBugt_45000006') & (FieldNames{k})

== 'Vestkyst_TannisBugt_45000006'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2008, []);
 elseif length((FieldNames{k})) == length('Holmsland_data_450000027') & (FieldNames{k}) ==

'Holmsland_data_450000027'
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2014, []);
 else
 Index_2016 = GetStructIndex(intersection_points.(FieldNames{k}), 2016, []);
 end

 transect_num_2016 = NaN(length(Index_2016),1);

 for n = 1:length(Index_2016)
 transect_num_2016(n) = intersection_points.(FieldNames{k})(Index_2016(n)).transect;
 end

 % fill in the structure with metadata
 for n = 1:length(transect_num_2016)
 MeanWidths.(FieldNames{k})(n).transect = transect_num_2016(n);
 % indexdata is the index at which the data, used for the
 % calculation of the mean, is found in the structure
 MeanWidths.(FieldNames{k})(n).indexdata =

GetStructIndex(intersection_points.(FieldNames{k}), [], transect_num_2016(n));

71

 end

 for n = 1:length(MeanWidths.(FieldNames{k}))
 for m = 1:length(MeanWidths.(FieldNames{k})(n).indexdata)
 % the available years (years in which the transects were
 % measured) for each transect
 MeanWidths.(FieldNames{k})(n).years(m) =

intersection_points.(FieldNames{k})(MeanWidths.(FieldNames{k})(n).indexdata(m)).year;
 end
 end

 %% Mean width per transect that has been measured during the same year per coastal area
 % for most coastal areas this year is 2016, except for the Danish
 % coastal areas, the years taken for these areas is mentioned above

 for n = 1:length(MeanWidths.(FieldNames{k}))
 % calculate and save the mean widths in the structure
 MeanWidths.(FieldNames{k})(n).mean_width_min2plus4 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_plus_4]

);
 MeanWidths.(FieldNames{k})(n).mean_width_0plus4 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_0_plus_4]);
 MeanWidths.(FieldNames{k})(n).mean_width_0plus2 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_0_plus_2]);
 MeanWidths.(FieldNames{k})(n).mean_width_min2min6 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_min_6])

;
 MeanWidths.(FieldNames{k})(n).mean_width_min2min8 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_min_8])

;
 MeanWidths.(FieldNames{k})(n).mean_width_plus2min2 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_plus_2_min_2]

);
 MeanWidths.(FieldNames{k})(n).mean_width_min2min4 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_min_4])

;
 MeanWidths.(FieldNames{k})(n).mean_width_min4min8 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_4_min_8])

;
 MeanWidths.(FieldNames{k})(n).mean_width_0min2 =

nanmean([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_0_min_2]);
 % save the standard deviation in the structure
 MeanWidths.(FieldNames{k})(n).stdv_width_min2plus4 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_plus_4])

;
 MeanWidths.(FieldNames{k})(n).stdv_width_0plus4 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_0_plus_4]);
 MeanWidths.(FieldNames{k})(n).stdv_width_0plus2 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_0_plus_2]);
 MeanWidths.(FieldNames{k})(n).stdv_width_min2min6 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_min_6]);
 MeanWidths.(FieldNames{k})(n).stdv_width_min2min8 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_min_8]);
 MeanWidths.(FieldNames{k})(n).stdv_width_plus2min2 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_plus_2_min_2])

;
 MeanWidths.(FieldNames{k})(n).stdv_width_min2min4 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_2_min_4]);
 MeanWidths.(FieldNames{k})(n).stdv_width_min4min8 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_min_4_min_8]);
 MeanWidths.(FieldNames{k})(n).stdv_width_0min2 =

nanstd([Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata)).Width_0_min_2]);
 end

 %% Mean width per transect that has been measured during the same year per coastal area

 for n = 1:length(MeanWidths.(FieldNames{k}))
 usable = find(MeanWidths.(FieldNames{k})(n).years >= 2006);
 % save the mean widths in the structure
 MeanWidths.(FieldNames{k})(n).mean_width_min2plus4_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_plus_4]

);
 MeanWidths.(FieldNames{k})(n).mean_width_0plus4_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_0_plus_4]);

72

 MeanWidths.(FieldNames{k})(n).mean_width_0plus2_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_0_plus_2]);
 MeanWidths.(FieldNames{k})(n).mean_width_min2min6_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_min_6])

;
 MeanWidths.(FieldNames{k})(n).mean_width_min2min8_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_min_8])

;
 MeanWidths.(FieldNames{k})(n).mean_width_plus2min2_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_plus_2_min_2]

);
 MeanWidths.(FieldNames{k})(n).mean_width_min2min4_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_min_4])

;
 MeanWidths.(FieldNames{k})(n).mean_width_min4min8_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_4_min_8])

;
 MeanWidths.(FieldNames{k})(n).mean_width_0min2_2006_2016 = nanmean(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_0_min_2]);
 % save the standard deviation in the structure
 MeanWidths.(FieldNames{k})(n).stdv_width_min2plus4_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_plus_4]

);
 MeanWidths.(FieldNames{k})(n).stdv_width_0plus4_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_0_plus_4]);
 MeanWidths.(FieldNames{k})(n).stdv_width_0plus2_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_0_plus_2]);
 MeanWidths.(FieldNames{k})(n).stdv_width_min2min6_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_min_6])

;
 MeanWidths.(FieldNames{k})(n).stdv_width_min2min8_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_min_8])

;
 MeanWidths.(FieldNames{k})(n).stdv_width_plus2min2_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_plus_2_min_2]

);
 MeanWidths.(FieldNames{k})(n).stdv_width_min2min4_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_2_min_4])

;
 MeanWidths.(FieldNames{k})(n).stdv_width_min4min8_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_min_4_min_8])

;
 MeanWidths.(FieldNames{k})(n).stdv_width_0min2_2006_2016 = nanstd(...

[Widths.(FieldNames{k})((MeanWidths.(FieldNames{k})(n).indexdata(usable))).Width_0_min_2]);

 usable = [];
 end

end

%% Save data

save(['Output\',save_struct_name_file,'.mat'],save_struct_name);
save(['Output\',save_struct_name_file_2,'.mat'],save_struct_name_2);

toc

73

Script 7: Slope_final.m

%% Calculate the slopes from the widths, Ivo Naus

clear all
close all

tic
%% Load data/add paths

addpath('Functions','Data_structs','Characteristics');

MeanWidths = load('MeanWidths2.mat');
data_name = fieldnames(MeanWidths); % Get the name of the loaded struct (field 1 in struct

'Data')
MeanWidths = getfield(MeanWidths, data_name{1}); % Change 'Data' to the loaded struct (not

a struct within a struct anymore

Widths = load('Widths2.mat');
data_name = fieldnames(Widths); % Get the name of the loaded struct (field 1 in struct

'Data')
Widths = getfield(Widths, data_name{1}); % Change 'Data' to the loaded struct (not a struct

within a struct anymore

% save file names

save_struct_name_file = 'Slopes2';

save_struct_name = 'Slopes';

save_struct_name_file_2 = 'MeanSlopes2';

save_struct_name_2 = 'MeanSlopes';
%% Calculating the slopes

fieldnames_widths = fieldnames(Widths);

for n = 1:length(fieldnames_widths)
 for m = 1:length(Widths.(fieldnames_widths{n}))
 % Saving meta-data in the new structure for the slopes
 Slopes.(fieldnames_widths{n})(m).transect = Widths.(fieldnames_widths{n})(m).transect;
 Slopes.(fieldnames_widths{n})(m).year = Widths.(fieldnames_widths{n})(m).year;
 Slopes.(fieldnames_widths{n})(m).coastal_area_number =

Widths.(fieldnames_widths{n})(m).coastal_area_number;
 Slopes.(fieldnames_widths{n})(m).num_of_points =

Widths.(fieldnames_widths{n})(m).num_of_points;

 % calculating and saving the slopes in the struct
 Slopes.(fieldnames_widths{n})(m).Slope_min_2_plus_4 =

Widths.(fieldnames_widths{n})(m).Width_min_2_plus_4/6;
 Slopes.(fieldnames_widths{n})(m).Slope_0_plus_2 =

Widths.(fieldnames_widths{n})(m).Width_0_plus_2/2;
 Slopes.(fieldnames_widths{n})(m).Slope_0_plus_4 =

Widths.(fieldnames_widths{n})(m).Width_0_plus_4/4;
 Slopes.(fieldnames_widths{n})(m).Slope_min_2_min_6 =

Widths.(fieldnames_widths{n})(m).Width_min_2_min_6/4;
 Slopes.(fieldnames_widths{n})(m).Slope_min_2_min_8 =

Widths.(fieldnames_widths{n})(m).Width_min_2_min_8/6;
 Slopes.(fieldnames_widths{n})(m).Slope_plus_2_min_2 =

Widths.(fieldnames_widths{n})(m).Width_plus_2_min_2/4;
 Slopes.(fieldnames_widths{n})(m).Slope_min_2_min_4 =

Widths.(fieldnames_widths{n})(m).Width_min_2_min_4/2;
 Slopes.(fieldnames_widths{n})(m).Slope_min_4_min_8 =

Widths.(fieldnames_widths{n})(m).Width_min_4_min_8/4;
 Slopes.(fieldnames_widths{n})(m).Slope_0_min_2 =

Widths.(fieldnames_widths{n})(m).Width_0_min_2/2;

74

 end
end

for n = 1:length(fieldnames_widths)
 for m = 1:length(MeanWidths.(fieldnames_widths{n}))
 % Saving meta-data in the new structure for the mean slopes
 MeanSlopes.(fieldnames_widths{n})(m).transect =

MeanWidths.(fieldnames_widths{n})(m).transect;
 MeanSlopes.(fieldnames_widths{n})(m).years =

MeanWidths.(fieldnames_widths{n})(m).years;
 MeanSlopes.(fieldnames_widths{n})(m).indexdata =

MeanWidths.(fieldnames_widths{n})(m).indexdata;

 % calculating and saving the mean slopes in the struct
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2plus4 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2plus4/6;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_0plus4 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_0plus4/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_0plus2 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_0plus2/2;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2min6 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2min6/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2min8 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2min8/6;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_plus2min2 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_plus2min2/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2min4 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2min4/2;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min4min8 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min4min8/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_0min2 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_0min2/2;

 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2plus4_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2plus4_2006_2016/6;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_0plus4_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_0plus4_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_0plus2_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_0plus2_2006_2016/2;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2min6_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2min6_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2min8_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2min8_2006_2016/6;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_plus2min2_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_plus2min2_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min2min4_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min2min4_2006_2016/2;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_min4min8_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_min4min8_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).mean_slope_0min2_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).mean_width_0min2_2006_2016/2;

 % calculating and saving the stdv slopes in the struct
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2plus4 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2plus4/6;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_0plus4 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_0plus4/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_0plus2 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_0plus2/2;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2min6 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2min6/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2min8 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2min8/6;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_plus2min2 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_plus2min2/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2min4 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2min4/2;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min4min8 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min4min8/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_0min2 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_0min2/2;

 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2plus4_2006_2016 = ...

75

 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2plus4_2006_2016/6;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_0plus4_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_0plus4_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_0plus2_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_0plus2_2006_2016/2;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2min6_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2min6_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2min8_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2min8_2006_2016/6;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_plus2min2_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_plus2min2_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min2min4_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min2min4_2006_2016/2;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_min4min8_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_min4min8_2006_2016/4;
 MeanSlopes.(fieldnames_widths{n})(m).stdv_slope_0min2_2006_2016 = ...
 MeanWidths.(fieldnames_widths{n})(m).stdv_width_0min2_2006_2016/2;
 end
end

%% save data

save(['Output\',save_struct_name_file,'.mat'],save_struct_name);
save(['Output\',save_struct_name_file_2,'.mat'],save_struct_name_2);

toc

3.5 Calculating the Volume and trends in volume changes
By executing the the oetsettings.m script from the Deltares Matlab OpenEarth Tools, instructions

found at: https://publicwiki.deltares.nl/display/OET/oetsettings, the paths needed to use the

function jarkus_getVolumeFast are established. This function is used in the

GetVolumes_diff_years_final.m script to determine the volumes under the profiles between the

input boundaries, located at the chosen height points. The mean volumes, over the whole

measurement history and over the period 2006-2016, were also determined in the same way this

was done for the means of the widths and slopes. Furthermore, trends in the volume changes over

the period 2006-2016 were determined in the VolumeTrends.m script. Per transect profile a linear

trend was fitted through the volume values, one for each year in this period (if there was data

available), and the slope of this linear trend was stored in a structure.

Script 8: GetVolumes_diff_years_final.m

%% Calculation of the volume of the sediment/sand between two height points in the profile.
% along with the mean and standard deviation of the volume, and save it in
% a struct.
% Ivo Naus

% Make sure the Shortcut "OET" has run before running this script! (to add
% the needed paths to the functions used)

clear all
close all

tic

%% load data

% save file names

https://publicwiki.deltares.nl/display/OET/oetsettings

76

save_struct_name_file = 'Volumes2';

save_struct_name = 'Volumes';

save_struct_name_file_2 = 'MeanVolumes2';

save_struct_name_2 = 'MeanVolumes';

addpath('Functions','Data_structs','Characteristics');

% load intersection points
intersection_points = load('intersection_points2.mat');

data_name = fieldnames(intersection_points); % Get the name of the loaded struct (field 1 in

struct 'Data')
intersection_points = getfield(intersection_points, data_name{1}); % Change 'Data' to the

loaded struct (not a struct within a struct anymore

names_intersection_points = fieldnames(intersection_points);

% load the measurement data_structs, change the dir_in to your local
% directory where the measurement data structures are located
dir_in = 'C:\Users\ivo\Documents\1 . Rijkswaterstaat stage\Werkmap\Matlab\Ivo

scripts\Beter\Calculating Characteristics\Data_structs\';
files = dir([dir_in,'*.mat']);

%% Calculating the volumes

% loop over all the measurement data files in the directory
for k = 1:length(files)
 if length(files(k).name(1:end-4)) == length(names_intersection_points{k}) &

files(k).name(1:end-4) == names_intersection_points{k}

 inputfile = files(k).name;
 load = load(inputfile);
 MakeCell = struct2cell(load);
 data = cell2struct(MakeCell, inputfile(1:end-4));

 length_loop = length(data.(inputfile(1:end-4)));

 % Structure where all the determined volumes will be stored
 Volumes.(inputfile(1:end-4)) =

struct('transect',[],'year',[],'coastal_area_number',[],...

'num_of_points',[],'Vol_min_2_plus_4',[],'Vol_0_plus_2',[],'Vol_0_plus_4',[],'Vol_min_2_min_6'

,[],...
 'Vol_min_2_min_8',[],'Vol_plus_2_min_2',[],'Vol_min_2_min_4',[]);

 % Structure where all the mean volumes will be saved
 MeanVolumes.(inputfile(1:end-4)) =

struct('transect',[],'years',[],'indexdata',[],'mean_vol_min2plus4', [],...
 'mean_vol_0plus4',[],'mean_vol_0plus2',[],'mean_vol_min2min6',[],...
 'mean_vol_min2min8',[],'mean_vol_plus2min2',[],'mean_vol_min2min4',[],...
 'mean_vol_min2plus4_2006_2016',[],'mean_vol_0plus4_2006_2016',[],...

'mean_vol_0plus2_2006_2016',[],'mean_vol_min2min6_2006_2016',[],'mean_vol_min2min8_2006_2016',

...
 [],'mean_vol_plus2min2_2006_2016',[],'mean_vol_min2min4_2006_2016',[],...

'stdv_vol_min2plus4',[],'stdv_vol_0plus4',[],'stdv_vol_0plus2',[],'stdv_vol_min2min6',[],...
 'stdv_vol_min2min8',[],'stdv_vol_plus2min2',[],'stdv_vol_min2min4',[],...
 'stdv_vol_min2plus4_2006_2016',[],'stdv_vol_0plus4_2006_2016',[],...

'stdv_vol_0plus2_2006_2016',[],'stdv_vol_min2min6_2006_2016',[],'stdv_vol_min2min8_2006_2016',

[],...
 'stdv_vol_plus2min2_2006_2016',[],'stdv_vol_min2min4_2006_2016',[]);

 % loop over all the transects in the measurement structure file
 for i = 1:length_loop

77

 if intersection_points.(inputfile(1:end-4))(i).transect == data.(inputfile(1:end-

4))(i).transect...
 && intersection_points.(inputfile(1:end-4))(i).year ==

data.(inputfile(1:end-4))(i).year

 % save the metadata in the new structure
 Volumes.(inputfile(1:end-4))(i).transect = data.(inputfile(1:end-

4))(i).transect;
 Volumes.(inputfile(1:end-4))(i).year = data.(inputfile(1:end-4))(i).year;
 Volumes.(inputfile(1:end-4))(i).coastal_area_number = data.(inputfile(1:end-

4))(i).coastal_area_number;
 Volumes.(inputfile(1:end-4))(i).num_of_points = data.(inputfile(1:end-

4))(i).num_of_points;

 % Calculate volume +4 -2
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_plus_4) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_2)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) -

intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(1,end) <= 0 ...
 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(1,end) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol1 = [];
 else
 % Input for the fuction: [Volume] = jarkus_getVolumeFast(x, z,

UpperBoundary, LowerBoundary, LandwardBoundary, SeawardBoundary,varargin)
 Vol1 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(2,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(1,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1));
 end

 % Save volume in structure
 if isempty(Vol1)
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_plus_4 = NaN;
 else
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_plus_4 = Vol1;
 end

 % Calculate volume +2 0
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_plus_2) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_0)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_0(1,end) -

intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(1,end) <= 0 ...
 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_0(1,end) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(1,end) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol2 = [];
 else
 % [Volume] = jarkus_getVolumeFast(x, z, UpperBoundary, LowerBoundary,

LandwardBoundary, SeawardBoundary,varargin)
 Vol2 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(2,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_0(2,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(1,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_0(1,end));
 end

 % Save volume in structure
 if isempty(Vol2)
 Volumes.(inputfile(1:end-4))(i).Vol_0_plus_2 = NaN;
 else
 Volumes.(inputfile(1:end-4))(i).Vol_0_plus_2 = Vol2;
 end

 % Calculate volume +4 0
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_plus_4) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_0)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_0(1,end) -

intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(1,end) <= 0 ...

78

 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_0(1,end) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(1,end) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol3 = [];
 else
 % [Volume] = jarkus_getVolumeFast(x, z, UpperBoundary, LowerBoundary,

LandwardBoundary, SeawardBoundary,varargin)
 Vol3 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(2,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_0(2,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_4(1,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_0(1,end));
 end

 % Save volume in structure
 if isempty(Vol3)
 Volumes.(inputfile(1:end-4))(i).Vol_0_plus_4 = NaN;
 else
 Volumes.(inputfile(1:end-4))(i).Vol_0_plus_4 = Vol3;
 end

 % Calculate volume -2 -6
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_6) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_2)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_6(1,1) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) <= 0 ...
 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_6(1,1) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol4 = [];
 else
 % [Volume] = jarkus_getVolumeFast(x, z, UpperBoundary, LowerBoundary,

LandwardBoundary, SeawardBoundary,varargin)
 Vol4 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_6(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_6(1,1));
 end

 % Save volume in structure
 if isempty(Vol4)
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_min_6 = NaN;
 else
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_min_6 = Vol4;
 end

 % Calculate volume -2 -8
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_8) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_2)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_8(1,1) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) <= 0 ...
 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_8(1,1) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol5 = [];
 else
 % [Volume] = jarkus_getVolumeFast(x, z, UpperBoundary, LowerBoundary,

LandwardBoundary, SeawardBoundary,varargin)
 Vol5 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_8(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_8(1,1));
 end

 % Save volume in structure
 if isempty(Vol5)
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_min_8 = NaN;
 else

79

 Volumes.(inputfile(1:end-4))(i).Vol_min_2_min_8 = Vol5;
 end

 % Calculate volume +2 -2
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_2) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_plus_2)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) -

intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(1,end) <= 0 ...
 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(1,end) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol6 = [];
 else
 % [Volume] = jarkus_getVolumeFast(x, z, UpperBoundary, LowerBoundary,

LandwardBoundary, SeawardBoundary,varargin)
 Vol6 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(2,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_plus_2(1,end),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1));
 end

 % Save volume in structure
 if isempty(Vol6)
 Volumes.(inputfile(1:end-4))(i).Vol_plus_2_min_2 = NaN;
 else
 Volumes.(inputfile(1:end-4))(i).Vol_plus_2_min_2 = Vol6;
 end

 % Calculate volume -2 -4
 if isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_2) ||

isempty(intersection_points.(inputfile(1:end-4))(i).x_is_min_4)...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_4(1,1) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) <= 0 ...
 || max(data.(inputfile(1:end-4))(i).x) -

intersection_points.(inputfile(1:end-4))(i).x_is_min_4(1,1) < 0 ...
 || intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1) -

min(data.(inputfile(1:end-4))(i).x) < 0
 Vol7 = [];
 else
 % [Volume] = jarkus_getVolumeFast(x, z, UpperBoundary, LowerBoundary,

LandwardBoundary, SeawardBoundary,varargin)
 Vol7 = jarkus_getVolumeFast(data.(inputfile(1:end-4))(i).x,

data.(inputfile(1:end-4))(i).y,...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_4(2,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_2(1,1),...
 intersection_points.(inputfile(1:end-4))(i).x_is_min_4(1,1));
 end

 % Save volume in structure
 if isempty(Vol7)
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_min_4 = NaN;
 else
 Volumes.(inputfile(1:end-4))(i).Vol_min_2_min_4 = Vol7;
 end

 else
 error('The measurement data and intersection data being used are not from the

same transect measurement')
 end
 end

 else
 error(['Names of the data in intersection_points and data_struct are not the same,

possible data mismatch on struct num: ',num2str(k)])
 end

 %% Make a struct with the indices of each year for each transect which is measured in 2016
 % Determine the mean and standard deviation of the widths calculated
 % for theses specific measurements

80

 % Get the index of each transect which was measured in 2016, except for
 % the coastal areas in denmark, as a lot of transects weren't measured
 % in 2016 a different year has been taken for each coastal area:
 % Vadehavsoer: 2014
 % Midtjylland: 2014
 % Agger: 2016 is good
 % Nationalpark-thy: 2009
 % VigsoJammerbugten: 1995
 % Tannis-Bugt: 2008
 % Holmsland: 2014

 if length((inputfile(1:end-4))) == length('Vestkyst_Vadehavsoer2_45000001') &

(inputfile(1:end-4)) == 'Vestkyst_Vadehavsoer2_45000001'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2014, []);
 elseif length((inputfile(1:end-4))) == length('Vestkyst_Midtjylland_45000002') &

(inputfile(1:end-4)) == 'Vestkyst_Midtjylland_45000002'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2014, []);
 elseif length((inputfile(1:end-4))) == length('Vestkyst_Agger_45000003') &

(inputfile(1:end-4)) == 'Vestkyst_Agger_45000003'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2016, []);
 elseif length((inputfile(1:end-4))) == length('Vestkyst_NationalparkThy_45000004') &

(inputfile(1:end-4)) == 'Vestkyst_NationalparkThy_45000004'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2009, []);
 elseif length((inputfile(1:end-4))) == length('Vestkyst_VigsoJammerbugten_45000005') &

(inputfile(1:end-4)) == 'Vestkyst_VigsoJammerbugten_45000005'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 1995, []);
 elseif length((inputfile(1:end-4))) == length('Vestkyst_TannisBugt_45000006') &

(inputfile(1:end-4)) == 'Vestkyst_TannisBugt_45000006'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2008, []);
 elseif length((inputfile(1:end-4))) == length('Holmsland_data_450000027') &

(inputfile(1:end-4)) == 'Holmsland_data_450000027'
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2014, []);
 else
 Index_2016 = GetStructIndex(intersection_points.(inputfile(1:end-4)), 2016, []);
 end

 transect_num_2016 = NaN(length(Index_2016),1);

 for n = 1:length(Index_2016)
 transect_num_2016(n) = intersection_points.(inputfile(1:end-

4))(Index_2016(n)).transect;
 end

 % fill in the structure, in which the mean volumes will be saved, with metadata
 for n = 1:length(transect_num_2016)
 MeanVolumes.(inputfile(1:end-4))(n).transect = transect_num_2016(n);
 MeanVolumes.(inputfile(1:end-4))(n).indexdata =

GetStructIndex(intersection_points.(inputfile(1:end-4)), [], transect_num_2016(n));
 end

 for n = 1:length(MeanVolumes.(inputfile(1:end-4)))
 for m = 1:length(MeanVolumes.(inputfile(1:end-4))(n).indexdata)
 MeanVolumes.(inputfile(1:end-4))(n).years(m) =

intersection_points.(inputfile(1:end-4))(MeanVolumes.(inputfile(1:end-

4))(n).indexdata(m)).year;
 end
 end

 %% Mean width per transect that has been measured in 2016

 for n = 1:length(MeanVolumes.(inputfile(1:end-4)))
 % save the mean widths in the structure
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2plus4 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_0plus4 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_0_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_0plus2 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_0_plus_2]);

81

 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2min6 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_min_6]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2min8 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_min_8]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_plus2min2 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_plus_2_min_2]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2min4 =

nanmean([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_min_4]);
 % save the standard deviation in the structure
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2plus4 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_0plus4 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_0_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_0plus2 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_0_plus_2]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2min6 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_min_6]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2min8 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_min_8]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_plus2min2 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_plus_2_min_2]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2min4 =

nanstd([Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata)).Vol_min_2_min_4]);
 end

 %% Mean width per transect that has been measured in 2016, between 2006 and 2016

 for n = 1:length(MeanVolumes.(inputfile(1:end-4)))
 usable = find(MeanVolumes.(inputfile(1:end-4))(n).years >= 2006);
 % save the mean widths in the structure
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2plus4_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_0plus4_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_0_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_0plus2_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_0_plus_2]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2min6_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_min_6]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2min8_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_min_8]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_plus2min2_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_plus_2_min_2]);
 MeanVolumes.(inputfile(1:end-4))(n).mean_vol_min2min4_2006_2016 = nanmean(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_min_4]);
 % save the standard deviation in the structure
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2plus4_2006_2016 = nanstd(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_0plus4_2006_2016 = nanstd(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_0_plus_4]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_0plus2_2006_2016 = nanstd(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_0_plus_2]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2min6_2006_2016 = nanstd(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_min_6]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2min8_2006_2016 = nanstd(...

82

 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_min_8]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_plus2min2_2006_2016 = nanstd(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_plus_2_min_2]);
 MeanVolumes.(inputfile(1:end-4))(n).stdv_vol_min2min4_2006_2016 = nanstd(...
 [Volumes.(inputfile(1:end-4))((MeanVolumes.(inputfile(1:end-

4))(n).indexdata(usable))).Vol_min_2_min_4]);

 usable = [];
 end

 clear load
end

%% Save data to the Output folder map

save(['Output\',save_struct_name_file,'.mat'],save_struct_name);
save(['Output\',save_struct_name_file_2,'.mat'],save_struct_name_2);

toc

Script 9: VolumeTrends.m

%% Calculating the linear trend in volume change for each profile
% Ivo Naus

clear all
close all

tic

%% load data & add paths & create some variables

% save file names

save_struct_name_file = 'TrendVolumes';

save_struct_name = 'TrendVolumes';

addpath('Functions','Data_structs','Characteristics');

% load mean volume data, used as the indices which indicate the location of
% of the same transect inside the volume data structure
MeanVolumes = load('MeanVolumes2.mat');
data_name = fieldnames(MeanVolumes); % Get the name of the loaded struct (field 1 in struct

'Data')
MeanVolumes = getfield(MeanVolumes, data_name{1}); % Change 'Data' to the loaded struct

(not a struct within a struct anymore

% load volume data
Volumes = load('Volumes2.mat');
data_name = fieldnames(Volumes); % Get the name of the loaded struct (field 1 in struct

'Data')
Volumes = getfield(Volumes, data_name{1}); % Change 'Data' to the loaded struct (not a

struct within a struct anymore

areanames = fieldnames(MeanVolumes);

%% Calculating trends per transect in the selection of transects, between 2006 and 2016
% for every transect measured in 2016,
% except for the Danish coastal areas, for which different years are used

nanvalues = 1;

83

% First a x and y variable will be determined, than the NaN values will be removed
% after which the linear fit will be determined useing polyfit and the
% slope 'p(1)' will be saved in a structure

% loop over all the coastal areas
for k = 1:length(areanames)
 for n = 1:length(MeanVolumes.(areanames{k}))
 usable = find(MeanVolumes.(areanames{k})(n).years >= 2006);
 % make a x and a y value, where the x value represents the year
 % number within the period and the y value the volume present
 % during that year. This is done for every Volume variable
 x1 = NaN(1,12);
 y1 = NaN(1,12);

 x2 = NaN(1,12);
 y2 = NaN(1,12);

 x3 = NaN(1,12);
 y3 = NaN(1,12);

 x4 = NaN(1,12);
 y4 = NaN(1,12);

 x5 = NaN(1,12);
 y5 = NaN(1,12);

 x6 = NaN(1,12);
 y6 = NaN(1,12);

 x7 = NaN(1,12);
 y7 = NaN(1,12);

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(1) = 1;
 y1(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(2) = 2;
 y1(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(3) = 3;
 y1(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(4) = 4;
 y1(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(5) = 5;
 y1(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

84

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(6) = 6;
 y1(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(7) = 7;
 y1(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(8) = 8;
 y1(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(9) = 9;
 y1(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(10) = 10;
 y1(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(11) = 11;
 y1(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])~=1
 x1(12) = 12;
 y1(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

plus_4])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_plus_4

];
 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(1) = 1;
 y2(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

85

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(2) = 2;
 y2(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(3) = 3;
 y2(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(4) = 4;
 y2(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(5) = 5;
 y2(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(6) = 6;
 y2(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(7) = 7;
 y2(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(8) = 8;
 y2(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(9) = 9;
 y2(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(10) = 10;
 y2(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(11) = 11;
 y2(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])~=1
 x2(12) = 12;
 y2(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];

86

 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_4])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_4];
 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(1) = 1;
 y3(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(2) = 2;
 y3(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(3) = 3;
 y3(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(4) = 4;
 y3(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(5) = 5;
 y3(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(6) = 6;
 y3(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(7) = 7;
 y3(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(8) = 8;
 y3(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(9) = 9;
 y3(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

87

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(10) = 10;
 y3(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(11) = 11;
 y3(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])~=1
 x3(12) = 12;
 y3(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus

_2])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_0_plus_2];
 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(1) = 1;
 y4(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(2) = 2;
 y4(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(3) = 3;
 y4(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(4) = 4;
 y4(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(5) = 5;
 y4(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(6) = 6;

88

 y4(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(7) = 7;
 y4(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(8) = 8;
 y4(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(9) = 9;
 y4(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(10) = 10;
 y4(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(11) = 11;
 y4(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])~=1
 x4(12) = 12;
 y4(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_6])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_6]

;
 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(1) = 1;
 y5(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(2) = 2;

89

 y5(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(3) = 3;
 y5(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(4) = 4;
 y5(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(5) = 5;
 y5(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(6) = 6;
 y5(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(7) = 7;
 y5(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(8) = 8;
 y5(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(9) = 9;
 y5(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(10) = 10;
 y5(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(11) = 11;
 y5(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

90

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])~=1
 x5(12) = 12;
 y5(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_8])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_8]

;
 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(1) = 1;
 y6(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(2) = 2;
 y6(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(3) = 3;
 y6(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(4) = 4;
 y6(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(5) = 5;
 y6(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(6) = 6;
 y6(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(7) = 7;
 y6(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

91

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(8) = 8;
 y6(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(9) = 9;
 y6(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(10) = 10;
 y6(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(11) = 11;
 y6(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])~=1
 x6(12) = 12;
 y6(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2

_min_2])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_plus_2_min_2

];
 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 for m = 1:length(usable)
 if MeanVolumes.(areanames{k})(n).years(usable(m)) == 2006 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(1) = 1;
 y7(1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2007 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(2) = 2;
 y7(2) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2008 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(3) = 3;
 y7(3) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2009 && ...

92

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(4) = 4;
 y7(4) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2010 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(5) = 5;
 y7(5) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2011 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(6) = 6;
 y7(6) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2012 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(7) = 7;
 y7(7) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2013 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(8) = 8;
 y7(8) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2014 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(9) = 9;
 y7(9) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2015 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(10) = 10;
 y7(10) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2016 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(11) = 11;
 y7(11) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif MeanVolumes.(areanames{k})(n).years(usable(m)) == 2017 && ...

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])~=1
 x7(12) = 12;
 y7(12) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;
 elseif

isnan([Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_

min_4])
 nanvalues(length(nanvalues)+1) =

[Volumes.(areanames{k})((MeanVolumes.(areanames{k})(n).indexdata(usable(m)))).Vol_min_2_min_4]

;

93

 else
 disp(['Something went wrong: wrong year in selected years ', num2str(k),' ',

num2str(n),' ',num2str(m)])
 end
 end

 x1(isnan(x1)) = [];
 y1(isnan(y1)) = [];

 x2(isnan(x2)) = [];
 y2(isnan(y2)) = [];

 x3(isnan(x3)) = [];
 y3(isnan(y3)) = [];

 x4(isnan(x4)) = [];
 y4(isnan(y4)) = [];

 x5(isnan(x5)) = [];
 y5(isnan(y5)) = [];

 x6(isnan(x6)) = [];
 y6(isnan(y6)) = [];

 x7(isnan(x7)) = [];
 y7(isnan(y7)) = [];

 if length(y1) > 2
 trend_min2plus4 = polyfit(x1,y1,1);
 else
 trend_min2plus4 = NaN;
 end

 if length(y2) > 2
 trend_0_plus_4 = polyfit(x2,y2,1);
 else
 trend_0_plus_4 = NaN;
 end

 if length(y3) > 2
 trend_0_plus_2 = polyfit(x3,y3,1);
 else
 trend_0_plus_2 = NaN;
 end

 if length(y4) > 2
 trend_min_2_min_6 = polyfit(x4,y4,1);
 else
 trend_min_2_min_6 = NaN;
 end

 if length(y5) > 2
 trend_min_2_min_8 = polyfit(x5,y5,1);
 else
 trend_min_2_min_8 = NaN;
 end

 if length(y6) > 2
 trend_plus_2_min_2 = polyfit(x6,y6,1);
 else
 trend_plus_2_min_2 = NaN;
 end

 if length(y7) > 2
 trend_min_2_min_4 = polyfit(x7,y7,1);
 else
 trend_min_2_min_4 = NaN;
 end

 % save the trend slopes in the structure
 TrendVolumes.(areanames{k})(n).transect = MeanVolumes.(areanames{k})(n).transect;

94

 TrendVolumes.(areanames{k})(n).years = MeanVolumes.(areanames{k})(n).years;
 TrendVolumes.(areanames{k})(n).indexdata = MeanVolumes.(areanames{k})(n).indexdata;

 TrendVolumes.(areanames{k})(n).trend_vol_min2plus4_2006_2016 = trend_min2plus4(1);
 TrendVolumes.(areanames{k})(n).trend_vol_0plus4_2006_2016 = trend_0_plus_4(1);
 TrendVolumes.(areanames{k})(n).trend_vol_0plus2_2006_2016 = trend_0_plus_2(1);
 TrendVolumes.(areanames{k})(n).trend_vol_min2min6_2006_2016 = trend_min_2_min_6(1);
 TrendVolumes.(areanames{k})(n).trend_vol_min2min8_2006_2016 = trend_min_2_min_8(1);
 TrendVolumes.(areanames{k})(n).trend_vol_plus2min2_2006_2016 = trend_plus_2_min_2(1);
 TrendVolumes.(areanames{k})(n).trend_vol_min2min4_2006_2016 = trend_min_2_min_4(1);

 % clear the variables as they are re-used in the next loop
 usable = [];

 clear trend_min2plus4
 clear x1
 clear y1

 clear trend_0_plus_4
 clear x2
 clear y2

 clear trend_0_plus_2
 clear x3
 clear y3

 clear trend_min_2_min_6
 clear x4
 clear y4

 clear trend_min_2_min_8
 clear x5
 clear y5

 clear trend_plus_2_min_2
 clear x6
 clear y6

 clear trend_min_2_min_4
 clear x7
 clear y7
 end
end

%% Saving the data (trends) to the Output folder map

save(['Output\',save_struct_name_file,'.mat'],save_struct_name);

toc

3.6 Plotting the results in one overview figure
There are a couple of scripts written for the plotting of the mean characteristics. Because the scripts

are mainly doing the same, only one of the scripts is shown here as an example.

Script 10: Plotting_Slope2Mean_noheads.m

%% plotting the slopes from south to north

clear all
close all

95

tic
%% Load data/add paths

addpath('Functions','Data_structs','Characteristics');

% Load the structure under the same name
MeanSlopes = load('MeanSlopes2.mat');
data_name = fieldnames(MeanSlopes); % Get the name of the loaded struct (field 1 in struct

'Data')
MeanSlopes = getfield(MeanSlopes, data_name{1}); % Change 'Data' to the loaded struct (not

a struct within a struct anymore

%% Setting the values at which the data will split (to be plotted in different colours)
% slope min4-min8
slope_min4_min8_split_1 = 50;
slope_min4_min8_split_2 = 100;
slope_min4_min8_split_3 = 150;
slope_min4_min8_split_4 = 200;

% slope min2 - min4
slope_min2_min4_split_1 = 30;
slope_min2_min4_split_2 = 60;
slope_min2_min4_split_3 = 90;
slope_min2_min4_split_4 = 120;
slope_min2_min4_split_5 = 150;

% slope plus2-min2
slope_plus2_min2_split_1 = 25;
slope_plus2_min2_split_2 = 50;
slope_plus2_min2_split_3 = 75;
slope_plus2_min2_split_4 = 100;
slope_plus2_min2_split_5 = 125;

% slope plus4-0
slope_plus4_0_split_1 = 20;
slope_plus4_0_split_2 = 40;
slope_plus4_0_split_3 = 60;
slope_plus4_0_split_4 = 80;
slope_plus4_0_split_5 = 100;

%% Making a south-north with the coastal area names, So when using a loop over these names the

order is n-s

% array with the coastal area names in order from south to north. To be
% able plot the coastal areas automatically in the rigth order within one loop
AreaNames_S_N = [string('Middelkerke_detail_320000newnum');

string('zws_vlaanderen_31000017');...
 string('walcheren_31000016'); string('nbeveland_31000015');...
 string('schouwen_31000013'); string('goeree_31000012');...
 string('voorne_31000011'); string('delf_31000009');...
 string('rijnland_31000008'); string('nh_31000007');...
 string('texel_31000006'); string('vlieland_31000005');...
 string('terschelling_31000004'); string('ameland_31000003');...
 string('schier_31000002'); string('Baltrum_data_49260040');...
 string('Langeoog_data_49260050'); string('All_Sylt_49250107');...
 string('Vestkyst_Vadehavsoer2_45000001'); string('Holmsland_data_450000027');...
 string('Vestkyst_Midtjylland_45000002'); string('Vestkyst_Agger_45000003');...
 string('Vestkyst_NationalparkThy_45000004');

string('Vestkyst_VigsoJammerbugten_45000005');...
 string('Vestkyst_TannisBugt_45000006')];

% These characteristics are plotted within the figure loop, the names of
% the characteristics are called using these strings and with the use of a
% loop looping over the different strings in this variable (for chname=..)
characteristic_name_slope = [string('mean_slope_0plus4'); string('mean_slope_plus2min2');...
 string('mean_slope_min2min4'); string('mean_slope_min4min8');...
 string('mean_slope_min4min8'); string('mean_slope_0plus4_2006_2016');...
 string('mean_slope_plus2min2_2006_2016'); string('mean_slope_min2min4_2006_2016');...
 string('mean_slope_min4min8_2006_2016'); string('mean_slope_min4min8_2006_2016')];

%% subfigures in the right order from south to north and without island heads, showing the

slopes

96

for chname = 1:length(characteristic_name_slope)
 if chname == 1 || chname == 2 || chname == 3 || chname == 4
 figure(1)
 subplot(4,1,chname)
 elseif chname == 6 || chname == 7 || chname == 8 || chname == 9
 figure(2)
 subplot(4,1,(chname-5))
 else
 end

 for n = 1:length(MeanSlopes.(AreaNames_S_N{1}))
 if chname == 5 || chname == 10
 elseif chname == 4 || chname == 9
 if MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_min4_min8_split_1

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*r'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_1 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min4_min8_split_2

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*m'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_2 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min4_min8_split_3

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*b'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_3 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min4_min8_split_4

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*c'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_4

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*g'); hold on
 elseif isnan(MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}))

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 elseif chname == 3 || chname == 8
 if MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_min2_min4_split_1

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*r'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_1 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min2_min4_split_2

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*m'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_2 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min2_min4_split_3

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*b'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_3 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min2_min4_split_4

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*c'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_4 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) < slope_min2_min4_split_5

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*g'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_5

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*y'); hold on
 elseif isnan(MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}))

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*k'); hold on
 else

97

 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 elseif chname == 2 || chname == 7
 if MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_1

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*r'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_1 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_2

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*m'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_2 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_3

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*b'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_3 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_4

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*c'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_4 &&

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_5

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*g'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_5

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*y'); hold on
 elseif isnan(MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}))

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 elseif chname == 1 || chname == 6
 if MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) <

slope_plus4_0_split_1

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*r'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus4_0_split_1 && MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname})

< slope_plus4_0_split_2

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*m'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus4_0_split_2 && MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname})

< slope_plus4_0_split_3

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*b'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus4_0_split_3 && MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname})

< slope_plus4_0_split_4

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*c'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus4_0_split_4 && MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname})

< slope_plus4_0_split_5

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*g'); hold on
 elseif MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}) >=

slope_plus4_0_split_5

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*y'); hold on
 elseif isnan(MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}))

plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*k'); hold on
 else

98

 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 else
 plot(n,MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname}),'*b');

hold on
 end
 determine_mean(n) =

MeanSlopes.(AreaNames_S_N{1})(n).(characteristic_name_slope{chname});
 end

 plot([n n],[0 8000],'--k')
 plot([1 n],[nanmean(determine_mean) nanmean(determine_mean)],'g','LineWidth',2)
 plot([1 n],[(nanmean(determine_mean)+(2*nanstd(determine_mean)))

(nanmean(determine_mean)...
 +(2*nanstd(determine_mean)))],'k','LineWidth',0.3)
 plot([1 n],[(nanmean(determine_mean)-(2*nanstd(determine_mean)))

(nanmean(determine_mean)...
 -(2*nanstd(determine_mean)))],'k','LineWidth',0.3)

 clear determine_mean

 for k = 2:length(AreaNames_S_N)
 if isempty(MeanSlopes.(AreaNames_S_N{k})(1).transect)
 disp(['coastal area: ',num2str(k),' is empty (no data)'])

 for m = 1:length(MeanSlopes.(AreaNames_S_N{k}))
 if chname == 5 || chname == 10
 elseif chname == 4 || chname == 9
 if MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_min4_min8_split_1
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*r'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_1 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min4_min8_split_2
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*m'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_2 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min4_min8_split_3
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*b'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_3 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min4_min8_split_4
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*c'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min4_min8_split_4
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*g'); hold on
 elseif

isnan(MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}))
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 elseif chname == 3 || chname == 8
 if MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_min2_min4_split_1
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*r'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_1 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min2_min4_split_2
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*m'); hold on

99

 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_2 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min2_min4_split_3
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*b'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_3 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min2_min4_split_4
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*c'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_4 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) < slope_min2_min4_split_5
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*g'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_min2_min4_split_5
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*y'); hold on
 elseif

isnan(MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}))
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 elseif chname == 2 || chname == 7
 if MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_1
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*r'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_1 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_2
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*m'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_2 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_3
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*b'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_3 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_4
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*c'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_4 &&

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus2_min2_split_5
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*g'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >=

slope_plus2_min2_split_5
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*y'); hold on
 elseif

isnan(MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}))
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end

100

 elseif chname == 1 || chname == 6
 if MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus4_0_split_1
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*r'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >= slope_plus4_0_split_1

&& MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus4_0_split_2
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*m'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >= slope_plus4_0_split_2

&& MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus4_0_split_3
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*b'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >= slope_plus4_0_split_3

&& MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus4_0_split_4
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*c'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >= slope_plus4_0_split_4

&& MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) <

slope_plus4_0_split_5
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*g'); hold on
 elseif

MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}) >= slope_plus4_0_split_5
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*y'); hold on
 elseif

isnan(MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}))
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),' ',num2str(k),'

',num2str(n)])
 end
 else
 plot(m+n+((k-

1)*50),MeanSlopes.(AreaNames_S_N{k})(m).(characteristic_name_slope{chname}),'*','color',[0+(k/

25) 0 1-(k/25)]); hold on
 end
 end

 plot([n+m+((k-1)*50) n+m+((k-1)*50)],[0 8000],'--k')

 else
 if k == 2 || k == 3 || k == 4 || k == 5 || k == 6 || k == 7 || k == 8 || k == 9

...
 || k == 10 || k == 19 || k == 21 || k == 22 || k == 23 || k == 24 || k ==

25
 transects_character = NaN(length(MeanSlopes.(AreaNames_S_N{k})),2);
 for l = 1:length(MeanSlopes.(AreaNames_S_N{k}))
 transects_character(l,1) = MeanSlopes.(AreaNames_S_N{k})(l).transect;
 transects_character(l,2) =

MeanSlopes.(AreaNames_S_N{k})(l).(characteristic_name_slope{chname});
 end

 order_transects_character = sortrows(transects_character,-1); % descend

 [order_transect_character_nohead, order_transect_character_head] =

Split_islandheads(order_transects_character,(AreaNames_S_N{k}));

 for m = 1:length(order_transect_character_nohead)
 if chname == 5 || chname == 10
 elseif chname == 4 || chname == 9
 if order_transect_character_nohead(m,2) < slope_min4_min8_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_1

&& order_transect_character_nohead(m,2) < slope_min4_min8_split_2

101

 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_2

&& order_transect_character_nohead(m,2) < slope_min4_min8_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_3

&& order_transect_character_nohead(m,2) < slope_min4_min8_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 3 || chname == 8
 if order_transect_character_nohead(m,2) < slope_min2_min4_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_1

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_2

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_3

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_4

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*y');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 2 || chname == 7
 if order_transect_character_nohead(m,2) < slope_plus2_min2_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_1 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_2 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_3 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_4 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*y');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on

102

 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 1 || chname == 6
 if order_transect_character_nohead(m,2) < slope_plus4_0_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_1

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_2

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_3

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_4

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*y');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 else
 plot(m+n+((k-

1)*50),order_transect_character_nohead(m,2),'*','color',[0+(k/25) 0 1-(k/25)]); hold on
 end

 end

 plot([n+m+((k-1)*50) n+m+((k-1)*50)],[0 8000],'--k')
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[nanmean(order_transect_character_nohead(:,2))

nanmean(order_transect_character_nohead(:,2))],'g','LineWidth',2)
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[(nanmean(order_transect_character_nohead(:,2))...
 +(2*nanstd(order_transect_character_nohead(:,2))))

(nanmean(order_transect_character_nohead(:,2))...
 +(2*nanstd(order_transect_character_nohead(:,2))))],'k','LineWidth',0.3)
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[(nanmean(order_transect_character_nohead(:,2))...
 -(2*nanstd(order_transect_character_nohead(:,2))))

(nanmean(order_transect_character_nohead(:,2))...
 -(2*nanstd(order_transect_character_nohead(:,2))))],'k','LineWidth',0.3)

 clear transects_character
 clear order_transects_character
 clear order_transect_character_nohead
 clear order_transect_character_head

 elseif k == 11 || k == 12 || k == 13 || k == 14 || k == 15 || k == 16 || k == 17

...
 || k == 20
 transects_character = NaN(length(MeanSlopes.(AreaNames_S_N{k})),2);
 for l = 1:length(MeanSlopes.(AreaNames_S_N{k}))
 transects_character(l,1) = MeanSlopes.(AreaNames_S_N{k})(l).transect;
 transects_character(l,2) =

MeanSlopes.(AreaNames_S_N{k})(l).(characteristic_name_slope{chname});
 end

 order_transects_character = sortrows(transects_character,1); % ascend

 [order_transect_character_nohead, order_transect_character_head] =

Split_islandheads(order_transects_character,(AreaNames_S_N{k}));

103

 for m = 1:length(order_transect_character_nohead)
 if chname == 5 || chname == 10
 elseif chname == 4 || chname == 9
 if order_transect_character_nohead(m,2) < slope_min4_min8_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_1

&& order_transect_character_nohead(m,2) < slope_min4_min8_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_2

&& order_transect_character_nohead(m,2) < slope_min4_min8_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_3

&& order_transect_character_nohead(m,2) < slope_min4_min8_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min4_min8_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 3 || chname == 8
 if order_transect_character_nohead(m,2) < slope_min2_min4_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_1

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_2

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_3

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_4

&& order_transect_character_nohead(m,2) < slope_min2_min4_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_min2_min4_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*y');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 2 || chname == 7
 if order_transect_character_nohead(m,2) < slope_plus2_min2_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_1 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_2 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_3 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_4 && order_transect_character_nohead(m,2) < slope_plus2_min2_split_5

104

 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif order_transect_character_nohead(m,2) >=

slope_plus2_min2_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*y');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 1 || chname == 6
 if order_transect_character_nohead(m,2) < slope_plus4_0_split_1
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*r');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_1

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_2
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*m');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_2

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_3
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*b');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_3

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_4
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*c');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_4

&& order_transect_character_nohead(m,2) < slope_plus4_0_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*g');

hold on
 elseif order_transect_character_nohead(m,2) >= slope_plus4_0_split_5
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*y');

hold on
 elseif isnan(order_transect_character_nohead(m,2))
 plot(m+n+((k-1)*50),order_transect_character_nohead(m,2),'*k');

hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 else
 plot(m+n+((k-

1)*50),order_transect_character_nohead(m,2),'*','color',[0+(k/25) 0 1-(k/25)]); hold on
 end
 end

 plot([n+m+((k-1)*50) n+m+((k-1)*50)],[0 8000],'--k')
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[nanmean(order_transect_character_nohead(:,2))

nanmean(order_transect_character_nohead(:,2))],'g','LineWidth',2)
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[(nanmean(order_transect_character_nohead(:,2))...
 +(2*nanstd(order_transect_character_nohead(:,2))))

(nanmean(order_transect_character_nohead(:,2))...
 +(2*nanstd(order_transect_character_nohead(:,2))))],'k','LineWidth',0.3)
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[(nanmean(order_transect_character_nohead(:,2))...
 -(2*nanstd(order_transect_character_nohead(:,2))))

(nanmean(order_transect_character_nohead(:,2))...
 -(2*nanstd(order_transect_character_nohead(:,2))))],'k','LineWidth',0.3)

 clear transects_character
 clear order_transects_character
 clear order_transect_character_nohead
 clear order_transect_character_head

 else
 if k == 18

 ind_1 = 1;
 ind_2 = 1;

105

 for kl = 1:length(MeanSlopes.(AreaNames_S_N{k}))
 if MeanSlopes.(AreaNames_S_N{k})(kl).transect > 50000 && ...
 MeanSlopes.(AreaNames_S_N{k})(kl).transect < 80000
 transects_character_sylt_1(ind_1,1) =

MeanSlopes.(AreaNames_S_N{k})(kl).transect;
 transects_character_sylt_1(ind_1,2) =

MeanSlopes.(AreaNames_S_N{k})(kl).(characteristic_name_slope{chname});

 ind_1 = ind_1 + 1;
 elseif MeanSlopes.(AreaNames_S_N{k})(kl).transect < 25000
 transects_character_sylt_2(ind_2,1) =

MeanSlopes.(AreaNames_S_N{k})(kl).transect;
 transects_character_sylt_2(ind_2,2) =

MeanSlopes.(AreaNames_S_N{k})(kl).(characteristic_name_slope{chname});

 ind_2 = ind_2 + 1;
 else
 end
 end

 order_transects_character_sylt_1 = sortrows(transects_character_sylt_1,-

1); % descend
 order_transects_character_sylt_2 = sortrows(transects_character_sylt_2,1);

% ascend

 order_transects_character_sylt = [transects_character_sylt_1;

transects_character_sylt_2];

 [order_transect_character_nohead_sylt, order_transect_character_head_sylt]

= Split_islandheads(order_transects_character_sylt,(AreaNames_S_N{k}));

 for m = 1:length(order_transect_character_nohead_sylt)
 if chname == 5 || chname == 10
 elseif chname == 4 || chname == 9
 if order_transect_character_nohead_sylt(m,2) <

slope_min4_min8_split_1
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*r'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min4_min8_split_1 && order_transect_character_nohead_sylt(m,2) < slope_min4_min8_split_2
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*m'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min4_min8_split_2 && order_transect_character_nohead_sylt(m,2) < slope_min4_min8_split_3
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*b'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min4_min8_split_3 && order_transect_character_nohead_sylt(m,2) < slope_min4_min8_split_4
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*c'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min4_min8_split_4
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*g'); hold on
 elseif isnan(order_transect_character_nohead_sylt(m,2))
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 3 || chname == 8
 if order_transect_character_nohead_sylt(m,2) <

slope_min2_min4_split_1
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*r'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min2_min4_split_1 && order_transect_character_nohead_sylt(m,2) < slope_min2_min4_split_2
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*m'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min2_min4_split_2 && order_transect_character_nohead_sylt(m,2) < slope_min2_min4_split_3
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*b'); hold on

106

 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min2_min4_split_3 && order_transect_character_nohead_sylt(m,2) < slope_min2_min4_split_4
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*c'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min2_min4_split_4 && order_transect_character_nohead_sylt(m,2) < slope_min2_min4_split_5
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*g'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_min2_min4_split_5
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*y'); hold on
 elseif isnan(order_transect_character_nohead_sylt(m,2))
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 2 || chname == 7
 if order_transect_character_nohead_sylt(m,2) <

slope_plus2_min2_split_1
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*r'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus2_min2_split_1 && order_transect_character_nohead_sylt(m,2) <

slope_plus2_min2_split_2
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*m'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus2_min2_split_2 && order_transect_character_nohead_sylt(m,2) <

slope_plus2_min2_split_3
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*b'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus2_min2_split_3 && order_transect_character_nohead_sylt(m,2) <

slope_plus2_min2_split_4
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*c'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus2_min2_split_4 && order_transect_character_nohead_sylt(m,2) <

slope_plus2_min2_split_5
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*g'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus2_min2_split_5
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*y'); hold on
 elseif isnan(order_transect_character_nohead_sylt(m,2))
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 elseif chname == 1 || chname == 6
 if order_transect_character_nohead_sylt(m,2) <

slope_plus4_0_split_1
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*r'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus4_0_split_1 && order_transect_character_nohead_sylt(m,2) < slope_plus4_0_split_2
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*m'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus4_0_split_2 && order_transect_character_nohead_sylt(m,2) < slope_plus4_0_split_3
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*b'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus4_0_split_3 && order_transect_character_nohead_sylt(m,2) < slope_plus4_0_split_4
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*c'); hold on
 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus4_0_split_4 && order_transect_character_nohead_sylt(m,2) < slope_plus4_0_split_5
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*g'); hold on

107

 elseif order_transect_character_nohead_sylt(m,2) >=

slope_plus4_0_split_5
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*y'); hold on
 elseif isnan(order_transect_character_nohead_sylt(m,2))
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*k'); hold on
 else
 disp(['Did not plot some points! ',num2str(chname),'

',num2str(k),' ',num2str(n)])
 end
 else
 plot(m+n+((k-

1)*50),order_transect_character_nohead_sylt(m,2),'*','color',[0+(k/25) 0 1-(k/25)]); hold on
 end
 end

 plot([n+m+((k-1)*50) n+m+((k-1)*50)],[0 8000],'--k')
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[nanmean(order_transect_character_nohead_sylt(:,2))

nanmean(order_transect_character_nohead_sylt(:,2))],'g','LineWidth',2)
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[(nanmean(order_transect_character_nohead_sylt(:,2))...
 +(2*nanstd(order_transect_character_nohead_sylt(:,2))))

(nanmean(order_transect_character_nohead_sylt(:,2))...

+(2*nanstd(order_transect_character_nohead_sylt(:,2))))],'k','LineWidth',0.3)
 plot([n+((k-1)*50) n+m+((k-

1)*50)],[(nanmean(order_transect_character_nohead_sylt(:,2))...
 -(2*nanstd(order_transect_character_nohead_sylt(:,2))))

(nanmean(order_transect_character_nohead_sylt(:,2))...
 -

(2*nanstd(order_transect_character_nohead_sylt(:,2))))],'k','LineWidth',0.3)

 else
 error('The input number of coastal areas larger than can be handled (>

25)')
 end
 end

 end
 n = n + length(MeanSlopes.(AreaNames_S_N{k}));
 end

 if chname == 1 || chname == 6
 ylabel({'+4 & 0';' '})
 ylim([0 150])
 set(gca, 'xtick',[])
 elseif chname == 2 || chname == 7
 ylabel({'+2 & -2';' '})
 ylim([0 150])
 set(gca, 'xtick',[])
 elseif chname == 3 || chname == 8
 ylabel({'-2 & -4';' '})
 ylim([0 200])
 set(gca, 'xtick',[])
 elseif chname == 4 || chname == 9
 disp('last subplot, y-label is inserted later')
 %ylabel({'-4 & -8';' '})
 ylim([0 330])
 set(gca, 'xtick',[])
 elseif chname == 5 || chname == 10
 else
 disp('No y-label')
 end

end
%

%
figure(1); hold on
set(gcf,'Name', 'Mean slope: for a selection of transects')

108

xlabel('Transect order from south to north, without island heads')
ylabel({'-4 & -8';'Slope (1/m)'})

figure(2); hold on
set(gcf,'Name', 'Mean slope between 2006-2016: for a selection of transects')
xlabel('Transect order from south to north, without island heads')
ylabel({'-4 & -8';'Slope (1/m)'})

toc

3.7 Functions

Function 1: GET_X_Y.m

function [x, y] = GET_X_Y(split_line, x, y)
%GET_X_Y Extracting x and y values from the jarkus files
% Getting the x and y values from the jarkus structure and locating them
% in new x and y arrays

len = length(split_line);

for i = 1:(len/2)
 split_line(i*2) = {split_line{i*2}(1:end-1)};

 X(i,1) = str2double(split_line{i*2-1});

 Y(i,1) = str2double(split_line{i*2})/100;
end

x(length(x)+1:length(x)+length(X),1) = X;

y(length(y)+1:length(y)+length(Y),1) = Y;

end

Function 2: GetStructIndex.m

function [index] = GetStructIndex(Struct, Year, Transect_Num)
%GetStructIndex find the field index of a data structure based on year and
%transect number
% Detailed explanation:
% The jarkus data is saved in a structure. Each transect (profile) has
% a measurement per year. So for each combination of year + transect
% number there is one measurement.
% Struct = the data structure
% Year = the year of the measurement which you want to extract
% Transect_Num = the number of the trasect/profile of the desired
% measurement
% if either the Year or the Transect_Num is left empty than all the index
% numbers belonging to the other one are returned

if isempty(Struct)
 error('ERROR: No data structure given');
end

index = [];

109

if isempty(Year)<1 && isempty(Transect_Num)<1
 for i = 1:length(Struct)
 if Struct(i).year == Year && Struct(i).transect == Transect_Num
 index = i;
 end
 end
 %disp('The index of the measurement at the input transect during input year is returned');
elseif isempty(Year) && isempty(Transect_Num)<1
 for i = 1:length(Struct)
 if Struct(i).transect == Transect_Num
 index = [index i];
 end
 end
 %disp('The indices of all measurements at the input transect are returned');
elseif isempty(Year)<1 && isempty(Transect_Num)
 for i = 1:length(Struct)
 if Struct(i).year == Year
 index = [index i];
 end
 end
 %disp('The indices of all transect measurements during input year are returned');
else
 error('ERROR: Both input Year and Transect_Num are empty. At least one should be given');

end

Function 3: Split_islandheads.m

function [characteristic_without_island_head, characteristic_island_head] =

Split_islandhead(characteristic, name_coastal_area)
%Split_islandhead Splitting the data from island heads from data of straight
%coastal parts
% Detailed explanation goes here
% input:
% characteristic = a matrix with two collumns, 1: transect number, 2: the
% characteristic
% name_coastal_area = name of the coastal area which is being analysed,
% this name has to be the same as the name used in the if statment of this
% function (it is the same as the initial structure file names (*.mat),
% where the data was stored from the jarkus files.
%
% Output:
% characteristic_without_island_head = the same matrix as input but only containing
% the transects which are on the straight parts of the coast, so without
% the island heads and some other special cases
% characteristic_island_head = the same matrix as the input but only
% containing the transects of the island head and some other special cases.

ind_head = 1;
ind_nohead = 1;

characteristic_without_island_head = [];
characteristic_island_head = [];

if length(name_coastal_area) == length('Middelkerke_detail_320000newnum') & name_coastal_area

== 'Middelkerke_detail_320000newnum'
elseif length(name_coastal_area) == length('zws_vlaanderen_31000017') & name_coastal_area ==

'zws_vlaanderen_31000017'
elseif length(name_coastal_area) == length('walcheren_31000016') & name_coastal_area ==

'walcheren_31000016'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) < 3526
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else

110

 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('nbeveland_31000015') & name_coastal_area ==

'nbeveland_31000015'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 100
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('schouwen_31000013') & name_coastal_area ==

'schouwen_31000013'
elseif length(name_coastal_area) == length('goeree_31000012') & name_coastal_area ==

'goeree_31000012'
elseif length(name_coastal_area) == length('voorne_31000011') & name_coastal_area ==

'voorne_31000011'
elseif length(name_coastal_area) == length('delf_31000009') & name_coastal_area ==

'delf_31000009'
elseif length(name_coastal_area) == length('rijnland_31000008') & name_coastal_area ==

'rijnland_31000008'
elseif length(name_coastal_area) == length('nh_31000007') & name_coastal_area == 'nh_31000007'
elseif length(name_coastal_area) == length('texel_31000006') & name_coastal_area ==

'texel_31000006'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 860 && characteristic(oi,1) < 2937
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('vlieland_31000005') & name_coastal_area ==

'vlieland_31000005'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 4060 && characteristic(oi,1) < 5367
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('terschelling_31000004') & name_coastal_area ==

'terschelling_31000004'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 540 && characteristic(oi,1) < 2660
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;

111

 end
 end
elseif length(name_coastal_area) == length('ameland_31000003') & name_coastal_area ==

'ameland_31000003'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 440 && characteristic(oi,1) < 2160
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('schier_31000002') & name_coastal_area ==

'schier_31000002'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 520 && characteristic(oi,1) < 1440
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('Baltrum_data_49260040') & name_coastal_area ==

'Baltrum_data_49260040'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 80 || characteristic(oi,1) < 70
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('Langeoog_data_49260050') & name_coastal_area ==

'Langeoog_data_49260050'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 35 && characteristic(oi,1) < 80
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('All_Sylt_49250107') & name_coastal_area ==

'All_Sylt_49250107'
 for oi = 1:length(characteristic)
 if (characteristic(oi,1) > 50000 && characteristic(oi,1) < 67387) ||

(characteristic(oi,1) > 0 && characteristic(oi,1) < 16462)
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

112

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('Vestkyst_Vadehavsoer2_45000001') &

name_coastal_area == 'Vestkyst_Vadehavsoer2_45000001'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 6270 && characteristic(oi,1) < 6450
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
elseif length(name_coastal_area) == length('Holmsland_data_450000027') & name_coastal_area ==

'Holmsland_data_450000027'
elseif length(name_coastal_area) == length('Vestkyst_Midtjylland_45000002') &

name_coastal_area == 'Vestkyst_Midtjylland_45000002'
elseif length(name_coastal_area) == length('Vestkyst_Agger_45000003') & name_coastal_area ==

'Vestkyst_Agger_45000003'
elseif length(name_coastal_area) == length('Vestkyst_NationalparkThy_45000004') &

name_coastal_area == 'Vestkyst_NationalparkThy_45000004'
elseif length(name_coastal_area) == length('Vestkyst_VigsoJammerbugten_45000005') &

name_coastal_area == 'Vestkyst_VigsoJammerbugten_45000005'
elseif length(name_coastal_area) == length('Vestkyst_TannisBugt_45000006') & name_coastal_area

== 'Vestkyst_TannisBugt_45000006'
 for oi = 1:length(characteristic)
 if characteristic(oi,1) > 1510 && characteristic(oi,1) < 1050
 characteristic_without_island_head(ind_nohead, 1) = characteristic(oi,1);
 characteristic_without_island_head(ind_nohead, 2) = characteristic(oi,2);

 ind_nohead = ind_nohead + 1;
 else
 characteristic_island_head(ind_head, 1) = characteristic(oi,1);
 characteristic_island_head(ind_head, 2) = characteristic(oi,2);

 ind_head = ind_head + 1;
 end
 end
else
 error('Input not correct')
end

if isempty(characteristic_without_island_head)
 characteristic_without_island_head = characteristic;
end

end

