

LEIBNIZ-INSTITUT FÜR ANGEWANDTE GEOPHYSIK HANNOVER

Reflexionsseismische Untersuchungen Scherwellenseismik Schillerslage

- Kurzbericht -

Projekt:

Interreg VB Nordseeprogramm: Topsoil

Processing und Bericht:	Helga Wiederhold
Technische Durchführung:	Jan Bayerle, Erwin Wagner, Sven Wedig
Projektleitung:	Helga Wiederhold
Berichtsdatum:	29.10.2018
Archiv-Nr.:	
TK 25:	3525

Seiten:
Anlagen:

37 (inkl. Anlagen) 10

Inhaltsverzeichnis

1.	Ein	leitung	3
2.	Me	ssgebiet und Durchführung der Messung	3
3.	Pro	cessing	4
	3.1.	Qualitätskontrolle	4
	3.2.	PreStack-Processing	5
	3.3.	Dynamische Korrekturen	6
	3.4.	PostStack-Processing	6
	3.5.	Ausgabe	6
	3.6.	Refraktionsauswertung	7
	3.7.	Synthetische Betrachtung	7
4.	Erg	ebnisse	10
5.	Zus	sammenfassung und Ausblick	12
6.	Lite	eratur	13

Anlagen

- Anlage 1: Lageplan
- Anlage 2: Geländeimpressionen
- Anlage 3: Messprotokoll
- Anlage 4: Sweep, Test mit verschiedenen Frequenzbändern
- Anlage 5: Sweep, unkorreliert
- Anlage 6: Einzelschüsse
- Anlage 7: CMP-Familien
- Anlage 8: Geschwindigkeitsanalyse
- Anlage 9: Seismische Sektionen (Zeit)
- Anlage 10: Refraktionsanalyse

1. Einleitung

Am 19. April 2018 wurde im Hydrogeophysik-Testfeld Schillerslage ein seismisches Profil mit SH-Wellen-Anregung (ELVIS 7) und SH-Landstreamer vermessen. Hintergrund der Messung ist einerseits die sehr gute Kenntnis des Messgebietes durch Bohrungen und verschiedene geophysikalische Messungen (Geoelektrik, Radar) zu deren Vergleich die Seismik noch fehlt. Andererseits ist es die sehr ähnliche geologische Situation zu dem TOPSOIL Messgebiet Münsterdorf, bei dem die Basis quartärer bzw. tertiärer Sedimente und Kreideoberkante ebenfalls in etwa 20 m Tiefe zu liegen kommt. In letzterem Messgebiet erschweren schwache Reflexionssignale bzw. die Überlagerung von Oberflächenwellen das Processing und damit das Ergebnis. Die jetzt in Schillerslage erfolgten Vergleichsmessungen dienen gewissermaßen der Kalibrierung der Messtechnik.

Ziel war die Abbildung der Kreideoberkante und möglicherweise darüber liegender Schichtgrenzen. Aus Bohrungen und Georadar ist z.B. die Reflexion einer Geschiebemergelschicht gut bekannt. Ziel ist einerseits das Potential der Seismik für oberflächennahe Abbildung zu zeigen, andererseits die Ankopplung seismischer Energie bei wenig verfestigtem Waldboden und damit unversiegelter Oberfläche zu testen.

2. Messgebiet und Durchführung der Messung

Das Messgebiet befindet sich östlich von Hannover, in einem Waldgebiet zwischen Schillerslage und Engensen. Ein detaillierter Lageplan des aktuellen seismischen Profils ist in Anlage 1 dargestellt. Eine detaillierte geologische Beschreibung des Gebietes liefert Binot (2008a, 2008b, 2017).

Die seismischen Messungen fanden am 19.04.2018 statt. Es wurde ein Profil von 300 m Länge von Mitarbeitern des LIAG vermessen. Beteiligt an den Messungen waren Jan Bayerle (Registrierung), Sven Wedig (Quellentechnik), Erwin Wagner (Linienaufbau) und zeitweise Helga Wiederhold. Die Messbedingungen seitens Wetter und Noise waren optimal: trocken, windstill, kein Verkehr oder anderer störender Noise. Die Ankopplung der seismischen Quelle und der Geophone war dagegen auf dem nur leicht verfestigten Waldweg nicht optimal. Fotos siehe Anlage 2.

Das Profil wurde mit einer Kombination aus split-spread und roll-along-Technik vermessen. Der erste Schusspunkt (VP) lag 1 m vor der aktiven Geophonauslage. Im 2-m Abstand wurde bis zum 90. Geophon vibriert, dann wurde der 120 m lange Streamer um 60 m versetzt. Insgesamt wurde der Streamer 3mal versetz. Am Ende wurde bis zum letzten Geophon entlang der Auslage vibriert. Durch diese Vorgehensweise wurde eine hohe Überdeckung (*fold*) im schusspunktnahen als auch im schusspunktfernen Bereich erzielt. Das Messprotokoll ist als Anlage 3 dem Bericht beigefügt.

Zu Beginn wurde ein Quellentest mit zwei unterschiedlichen Sweeps durchgeführt (20 - 160 Hz und 50 - 220 Hz). Aufgrund der schwächeren Ausprägung einer Oberflächenwelle haben wir uns für den Sweep mit dem höheren Frequenzspektrum (50 - 220 Hz) entschieden. Am Ende des Profils wurde ein weiterer Vergleich durchgeführt. Die Ergebnisse des Vergleichs sind in Anlage 4 dargestellt.

Für die Messung verwendete Geräte und Mess- und Profilparameter sind in Tabellen 1 und 2 zusammengefasst. Eine topographische Vermessung entfällt, da sich das Profil an bereits eingemessenen Pflöcken orientiert (Binot 2017).

Tabelle 1: Akquisitionsparameter

Quelle	Elektrodynamischer Scherwellenvibrator ELVIS 7 Ausrichtung: SH
Sweep	50 Hz - 220 Hz – 10 s, pro Anregungspunkt erfolgten zwei sweeps mit jeweils inverser Polarisation
Sampleintervall	1 ms
Aufnahme	unkorreliert, nicht gestapelt, SEG-2-Format
Aufnahmenlänge	12 s
Verstärkung (pre-amp gain)	24 dB
Aufnahmeapparatur	Geometrics Geode
Gesamtanzahl Kanäle	124
Geophone	SM6 – 10Hz, die Geophone sind zu einem Landstreamer verbunden
Geophonabstand	1 m
Schusspunktabstand	2 m

Tabelle 2: Profilparameter

Profilrichtung	E -> W
Anzahl Kanäle (aktiv)	120
Sweep Kanäle	Nr. 121: Referenzsweep der Vibratorsteuerung Nr. 122: Beschleunigungsaufnehmer "baseplate" Nr. 123: Beschleunigungsaufnehmer "Masse" Nr. 124: Strom
Profilgeophone PG	
PG (m) (Geode/Messprotokoll)	1000-1300
PG-Nr (ProMAX)	1001-1301
Schusspunkte VP VP (m) (Geode/Messprotokoll) VP-Nr (ProMAX)	dito
Anzahl Schusspunkte	308
nach "vertical stack"	154
FFID	1000-1307
Umbau	3
CMP-Punkte Abstand 0,5 m	2003-2602
CMP-Profillänge	299 m
CMP-Überdeckung maximal (mittel)	46 (31)
Kreuzungspunkte (ProMAX)	PG 1061 = CMP 2122 = Pflock 150 m PG 1161 = CMP 2322 = Pflock 50 m (Wegkreuzung) PG 1301 = CMP 2602 = Pflock -90 m

3. Processing

Die reflexionsseismische Bearbeitung der Daten erfolgte mit dem kommerziellen Processingsystem ProMAX (Landmark Corp., Version 2003.12.1) auf einer IBM Workstation.

Alle Processingschritte sind mit den wichtigsten Parametern in Tab. 3 aufgelistet.

3.1. Qualitätskontrolle

Als erste Qualitätskontrolle wurden die unkorrelierten Sweepaufzeichnungen (chan 121-124) überprüft. Kanal 121 zeigt bis auf eine Verpolung (1266.dat und 1267.dat) keine Unregelmäßigkeit (Anlage 5.1) und kann für die Vibroseiskorrelation verwendet werden. Die Mitaufzeichnung durch den Beschleunigungsaufnehmer auf der Masse (chan 123) ist ein gutes

Maß für den Einfluss der Ankopplung (Anlage 5.2) und deutet vereinzelt auf schlechter angekoppelte Schüsse hin.

Nach der Vibroseiskorrelation werden schlechte Geophone ausgesondert (chan 30, 98). Anschließend werden die pro Anregungspunkt vorliegenden zwei Records gestapelt (vertical stack) und die Einzelschüsse analysiert.

Die Einzelschüsse zeigen starke Oberflächenwellen, keine augenfälligen Reflexionen, höchstens Bruchstücke, eine kräftige, vermutlich refraktierte Welle mit Ansatz von Reflexion. Die Signale außerhalb des Ersteinsatz- bzw. Oberflächenwellenkegels zwischen 50 und 150 ms könnten (aufgrund ihrer Geschwindigkeit) Einsätze von P-Wellen sein. Eine exemplarische Auswahl von Rohdaten und PreStack-processierten Daten ist in Anlage 6 beigefügt.

Zur weiteren Qualitätsabschätzung ist in Abbildung 1 die Offset-Verteilung der einzelnen Spuren und die CMP-Überdeckung (fold) dargestellt.

Abbildung 1: Offset-Verteilung aller Spuren und CMP-Überdeckung.

3.2. PreStack-Processing

Leibniz-Institut für

Angewandte Geophysik

IAG

Nach dem Einlesen der Rohdaten, Vibroseiskorrelation, vertikaler Stapelung und der Geometriezuweisung wurden verschiedene weitere Processingschritte angewendet. Bei der Geometrie gilt es zu beachten, dass ProMAX-intern nur 8-stellige Zahlen verwendet werden können. Um eine zufriedenstellende Genauigkeit zu erreichen, wurden vom Rechtswert 500000 und vom Hochwert 5800000 subtrahiert. Bei einem späteren georeferenziertem Verwenden der Daten muss die Korrektur der Werte berücksichtigt werden. Es wurden UTM-Koordinaten verwendet.

Anhand der Einzelschüsse und verschiedener Spursortierungen wurden schlechte Spuren erkannt und gelöscht. Aufgrund des Interesses an oberflächennahen Strukturen und keinem erkennbaren Nutzsignal in größeren Laufzeiten wurden die Spuren auf eine Länge von 1000 ms reduziert.

Zum Amplitudenausgleich wurde zuerst die sphärische Divergenz über eine konstante Geschwindigkeit von 300 m/s für jede Spur korrigiert (TRUE AMPLITUDE RECOVERY). Daran anschließend erfolgte Amplitudenausgleich je Einzelschuss (ENSEMBLE BALANCE).

T

- 6 -

Es folgen der spektrale Ausgleich über das Modul TV SPECTRAL WHITENING im Bereich 48-54-200-220 Hz (5 Fenster), eine AGC (AUTOMATIC GAIN CONTROL) mit einer Länge von 200 ms und ein Frequenzfilter (BANDPASS FILTER) 48-54-200-220 Hz.

Zur Abschwächung der Oberflächenwellen wird ein Geschwindigkeitsfilter angewendet (F-K-FILTER). Über eine F-K-Analyse wurde ein Polygon für den Durchlassbereich definiert.

PreStack-processierte CMP-Familien sind in Anlage 7 dargestellt.

3.3. Dynamische Korrekturen

Für die vor der CMP-Stapelung notwendige dynamische Korrektur (NMO) wurde eine interaktive Geschwindigkeitsanalyse (VELOCITY ANALYSIS) durchgeführt, bei der die Spuren einer bzw. mehrerer CMP-Familien in Semblance-Analysen und Stapeltests eingingen. Der Analysenabstand betrug 50 CMPs. Das Geschwindigkeitsmodell wurde iterativ verbessert (Anlage 8.1).

Um sicherzustellen, dass bei der Stapelung im oberflächennahen Bereich keine Einsätze von Refraktionssignalen oder Oberflächenwellen aufgestapelt werden, wurden in den NMOkorrigierten CMP-Familien top und bottom mute Grenzen manuell gepickt.

Die für die Stapelung verwendeten Geschwindigkeitsmodelle (*rms-velocities*) sind in Anlage 8.2 dargestellt. Nach erfolgter NMO-Korrektur wurden die CMP-Spuren gestapelt. Es wurden keinerlei statische Korrekturen angewendet. Bezugsniveau ist Geländeoberkante (elevation).

3.4. PostStack-Processing

Für die anschließende Migration im Zeitbereich wurden die Intervallgeschwindigkeiten aus den Stapelgeschwindigkeiten berechnet und eine mittlere Funktion abgeleitet (Anlage 8.3). Für die Migration wurde das PostStack-Modul IMPLICIT FD TIME MIGRATION verwendet. Die Geschwindigkeiten wurden dabei auf 70% reduziert. Die Migration wurde mit dem gesamten geglätteten Geschwindigkeitsfeld gerechnet und auch mit nur einer einzelnen Funktion (siehe Anlage 8.3). Die Unterschiede sind vernachlässigbar.

Mit einer F-X DECONVOLUTION und anschließender SPIKING/PREDICTIVE DECONVOLUTION (zero phase spiking) inklusive Bandpassfilter (48-54-160-180 Hz) wurde das Bild verbessert.

Anschließend wurde mit derselben Geschwindigkeitsfunktion, die zur Migration verwendet wurde, die migrierte Zeitsektion in Tiefe umgerechnet (TIME/DEPTH CONVERSION) (Geschwindigkeitsreduktion 80%).

3.5. Ausgabe

Zeit- und migrierte Zeitsektion befinden sich in Anlage 9. Die Tiefensektion ist in Abbildung 7 dargestellt.

Tabelle 3: Processingschritte

	Processingschritte
	Data Input Automatic Gain Control [1000 ms]; chan 1-120
	Vibroseis Correlation (chan 121)
	Trace length 1000 ms
ten	Quality Control / Trace Kill
nda	Ensemble Stack (2 input ensembles per output ensemble)
Roł	Geometry Load
tack	True Amplitude Recovery (time-velocity: 0-100) Ensemble Balance (time gate: 0-1000) TV Spectral Whitening [50-55-215-225], 5 frequency panels, 250 ms balancing scalar length Automatic Gain Control [200 ms]
reSt	F-K Filter, polygon, accept Zero phase spiking deconvolution
Dynamische Korrektur	Velocity Analysis Normal Moveout Correction [without <i>stretch mute</i>] Trace Muting [<i>top mute, bottom mute</i>] CDP Stack
Poststack	Trace Equalization Implicit FD Time Migration (70% smoothed interval velocities) F-X Decon (number of filter samples 5, window length 250 ms) Zero phase spiking deconvolution Bandpass-Filter 48-54-160-180 Time/Depth Conversion (80% smoothed interval velocities)
Output	SEGY Data Output CGM-Plot

3.6. Refraktionsauswertung

Zusätzlich zu dem oben aufgeführten Processing wurden die Ersteinsätze refraktionsseismisch analysiert, mit dem Ziel auf diesem Weg die Tiefe der Kreideoberkante zu erfassen. Dazu wurde das in ProMAX enthaltene Modul REFRACTION STATICS* verwendet. Es wurde ein Zweischichtfall zu Grunde gelegt. Die Geschwindigkeit der ersten Schicht (V0) wurde auf 200 m/s gesetzt. Beispiele für das Festlegen der Ersteinsatzlaufzeiten sowie die Ergebnisse der Analyse sind Anlage 10 dargestellt.

3.7. Synthetische Betrachtung

Zur Einschätzung der Glaubwürdigkeit der Daten und auch um das optimale Registrierfenster für Reflexionen zu verdeutlichen wurden synthetische Betrachtungen durchgeführt. Hierzu wurden für ein simples Modell (Tabelle 4), welches sich an die Ergebnisse der Georadar Untersuchungen beschrieben bei Helms (2018) bzw. Igel et al. (2018) anlehnt, synthetische Seismogramme berechnet (Abbildung 2): Schicht 2 Geschiebemergel, Schicht 3 Top Kreide, Schicht 4 fiktiv.

Index	Tiefe z (m)	Geschw. V (m/s)	Zweiweg- Laufzeit (TWT) t (s)	Schicht- dicke h (m)	V _{average} (m/s)	V _{rms} (m/s)	Interceptzeit für Refraktion t _{ic} (s)	kritische Entfernung x _c (m)
				$h = \frac{1}{2}Vdt$	$V_{ave} = \frac{\sum_{i} h_{i}}{\sum_{i} h_{i}/V_{i}}$	$V_{rms} = \sqrt{\frac{\sum_{i} V_{i}^{2} t_{i}}{\sum_{i} t_{i}}}$	$t_{ic} = \frac{2h_1}{V_1} \frac{\sqrt{V_2^2 - V_1^2}}{V_2}$	$x_{c} = \frac{2h_{1}}{\sqrt{\left(\frac{V_{2}}{V_{1}}\right)^{2} - 1}}$
1	0,9	180	0,04	0,9	180	180	0,0	
2	9,3	240	0,08	8,4	232	235	0,07	2
3	25,8	330	0,18	16,5	287	290	0,055	17,8
4	53,8	800	0,25	28,0	430	490	0,146	15

Tabelle 4: Parameter für synthetisches Seismogramm

Abbildung 2: Synthetische Laufzeitkurven für Refraktions- und Reflexionseinsätze entsprechend Tab. 4. Für Refraktionen wurde $V_{Schicht}$ und für Reflexionen V_{rms} verwendet. Die Refraktionseinsätze können in der Praxis erst ab der kritischen Entfernung auftreten (Tab. 4).

Die Laufzeitkurven (Abbildung 2) zeigen, dass das laterale Registrierfenster für oberflächennahe Reflexionen mit niedrigen Geschwindigkeiten (etwa <350 m/s) sehr klein ist und sich auf geringe Entfernungen zum Schusspunkt beschränkt. Mit zunehmender Entfernung und Laufzeit überlagern sich die verschiedenen Einsätze von Refraktionen, Reflexionen und auch Oberflächenwellen (in Abbildung 2 durch die "direkte Welle" vertreten) und sind nicht sauber zu trennen. Hier kann die gezielte Anwendung eines F-K-Filter sehr nützlich und notwendig sein. Bei der NMO-Korrektur erfahren die Reflexionssignale eine große Frequenzverzerrung und werden durch das mute eliminiert (Abbildung 3). Abbildung 3b verdeutlicht das optimale Registrierfenster.

Abbildung 3: a) Reflexionseinsätze wie in Abb. 2; b) NMO-Korrektur mit 30% stretch mute angewendet.

Die synthetischen Daten wurden auch benutzt, um die Effektivität des F-K-Filters zu testen. Der Vergleich zwischen den verschiedenen ProMAX-Moduln (Abbildung 4) zeigt das beste Ergebnis bei Verwendung eines Polygons zur Festlegung der Filterparameter (Abb. 4c). Die mögliche Frequenzverschmierung kann durch eine Spike Deconvolution wieder verbessert werden (Abbildung 5). Generell ist aber das Signal-Noise-Verhältnis schlechter als bei den Fan-Filtern. Die Fan-Filter (Abb. 4b und 4d) haben jedoch Probleme bei niedrigen Geschwindigkeiten; der Einsatz mit einer Geschwindigkeit von 180 m/s wird z.B. nicht eliminiert.

Abbildung 4: a) Synthetisches Seismogramm analog Abb. 2 und Tabelle 1, aber mit einem Klauder-Wavelet (50-220 Hz) berechnet und random noise aufaddiert; b) F-K-Filter (Fan accept -1000,1000 m/s, 50-220 Hz); c) F-K-Filter (polygon accept) (Polygon siehe Abb. 6); c) Fan-Filter (pass, low-cut 900 m/s, high-cut 1000 m/s)

Abbildung 5: wie Abb. 4, bei b) bis d) wurde nachfolgend Spike Deconvolution angewendet. Unterschiede in der Skalierung zu Abb. 4 ergeben sich durch Einstellung auf "entire screen".

Abbildung 6: Frequenz-Wellenzahl (F-K-) Diagramm zu Abbildung 4a mit Polygon zu Abbildung 4c. Die Eckpunkte des Polygons sind: F-K: 37- -0.04, 37-0.02, 148-0.23, 160-0, 150- -0.25. (Diskrepanz zwischen Werten in Abb. und Werten des Polygons (k-Wert um Faktor 2 größer) ist zu klären)

4. Ergebnisse

Das reflexionsseismische Profil von Schillerslage zeigt einen Reflektor bei etwa 165 ms (Anlage 9.2) bzw. etwa 20 m Tiefe (Abbildung 7). Dieser Reflektor ist vermutlich dem Übergang von elsterzeitlichem Kies und Sand zum Kalkmergelstein der Oberkreide zuzuordnen (Abbildung 8). Der Reflektor ist nur schwach ausgebildet und weist unterschiedliche Qualität auf. Dies ist der relativ schlechten Nutzsignalausbeute zuzuschreiben. Inwieweit diese auch durch die starke Topographie einer darüber liegenden Geschiebemergelschicht, wie sie Igel (2018) beschreibt, beeinflusst wird, bleibt zu untersuchen. Der Geschiebemergel bildet sich auf jeden Fall nicht in der Klarheit wie bei Igel (2018) beschrieben ab. Bruchstückhafte Reflexionen sind aber oberhalb der Kreidereflexion zu erkennen.

Zur Qualität ist zu bemerken, dass die CMP-Überdeckung zwar im Mittel 30 beträgt (Abb. 1 und 7), sich für den oberflächennahen Bereich aber verringert. So tragen zur Reflexion Top Kreide z.B. nur Offsets bis ±40 m bei, d.h. für die Überdeckung eine Reduktion auf etwa 20 Spuren. Die Überdeckung der darüber liegenden Reflexionen ist entsprechend weiter reduziert.

Die Oberkreide wird auch durch die Refraktionsanalyse erfasst und weist eine Refraktorgeschwindigkeit von 1200 m/s auf (Anlage 10). Die Tiefe des Refraktors ergibt sich ebenfalls auf knapp 20 m, ist aber aufgrund Unsicherheit in der V0-Geschwindigkeit mit Fehler behaftet.

Abbildung 7: Migrierte Zeitsektion, tiefengewandelt (oben "colour display" (Farbschema rot-weißschwarz), unten "wiggle trace"). Im oberen Teil der Abbildung ist die Überdeckung (fold) der CMPs dargestellt.

Abbildung 8: Migrierte Zeitsektion, tiefengewandelt, mit Interpretation. Das Bohrprofil Engensen01 (Binot 2008) weist folgende geologische Einheiten auf (von oben nach unten): Sand (Drenthe), Kies (Drenthe), Geschiebemergel (Elster), Kies und Sand (Elster), Kalkmergelstein (Oberkreide).

T

- 12 -

5. Zusammenfassung und Ausblick

AG Leibniz-Institut für Angewandte Geophysik

Im Rahmen des TOPSOIL-Projektes wurde ein reflexionsseismisches Profil gemessen und ausgewertet. Die finale Sektion zeigt eine mehr oder weniger horizontal liegende Reflexion der Oberkante der Formation Kreide in etwa 20 m Tiefe. Oberhalb des Horizontes Top Kreide sind bruchstückhaft Reflexionen erkennbar. Eine Aussage zur Interpretation ist hier jedoch spekulativ. Es bleibt aber festzuhalten, dass aufgrund sorgfältiger Datenanalyse und Datenbearbeitung Störsignale weitestgehend eliminiert wurden.

Die Frage, ob die etwas zerstückelt wirkende Ausbildung des Reflektors Top Kreide der geringen Nutzsignalausbeute aufgrund schlechter Energieankopplung zuzuschreiben ist oder der Geologie geschuldet ist, kann nicht eindeutig geklärt werden. Ein Grund für die geringe Signalausbeute bei der Reflexion Top Kreide könnte auch in der Streuung der seismischen Energie durch eine unregelmäßig ausgeprägte Geschiebemergelschicht im Hangenden liegen.

Um mehr Klarheit in der Interpretation, aber auch um mehr Vertrauen in das Schichtauflösungsvermögen der Scherwellenseismik im oberflächennahen Bereich zu bekommen, werden folgende weitere Schritte vorgeschlagen:

- Test mit "gesteckten" Geophonen, um bessere Ankopplung zwischen Geophon und Boden und damit eine Signalverbesserung zu erreichen. Ggf. auch Reduzierung des Geophonabstandes auf 0,5 m.
- Messung bei gefrorenem Boden, um zu sehen ob dadurch ein Versiegelungseffekt erreicht werden kann und damit die Ausbreitung von Oberflächenwellen unterbunden wird. Eindrucksvolle Beispiele für oberflächennahe Auflösung mit Scherwellenseismik bei versiegelter Oberfläche zeigen Polom et al. (2013, 2017).
- Modellierung des gesamten Wellenfeldes unter Berücksichtigung des aus Georadarmessungen abgeleiteten Schichtenmodells (siehe Igel et al. 2017).

Generell könnte es Sinn machen, das Testgebiet Schillerslage für eine Aufstellung mit 3-Komponenten-Geophonen und Anregung mit P- und S-Wellen zu nutzen.

Leibniz-Institut für

Angewandte Geophysik

- Binot, F. (2008a): Geologische Kurzbeschreibung des Mess- und Testgebiets des GGA-Instituts nördlich von Schillerslage bei Burgdorf, Niedersachsen, zur Vorbereitung von geoelektrischen Messungen und Bohrungen. - GGA-Bericht, Archiv-Nr. 0128099; Hannover.
- Binot, F. (2008b): Vier neue Bohrungen im Mess- und Testgebiet des GGA-Instituts nördlich von Schillerslage bei Burgdorf, Niedersachsen. - GGA-Bericht, 36 S., Archiv Nr. 0128085; Hannover.
- Binot, F. (2017): Dokumentation und geologische Interpretation weiterer Bohrungen im Mess- und Testgebiet des LIAG im Raum Engensen - Schillerslage bei Burgdorf, Niedersachsen. - LIAG-Bericht, 30 S., 10 Abb., 10 Anl., 10 Tab., Archiv-Nr. 0135003; Hannover.
- Helms, J. (2018): Das geophysikalische Testgebiet Schillerslage: Eine 3D-geologische Modellierung auf der Basis von Georadar und Bohrdaten. - 85 S., Masterarbeit, LU Hannover.
- Igel, J., Dlugosch, R., Günther, T., Müller-Petke, M., Jiang, C., Helms, J., Lang, J. & Winsemann, J. (2018): Combined GPR and surface magnetic resonance investigation for aquifer characterisation. -Proceedings of the 17th International Conference of Ground Penetrating Radar, GPR2018, 18-21.06.2018, University of Applied Sciences Rapperswil, 5 p.
- Polom, U., Bagge, M., Wadas, S., Winsemann, J., Brandes, C., Binot, F. & Krawczyk, C.M. (2013): Surveying near-surface depocentres by means of shear wave seismics. First Break, 31, 8, 63-75.
- Polom, U., Rønning, J.S., Tassis, G., Gellein, J., Druivenga, G. (2017): Building site investigation by joint shear wave reflection seismic and geotechnical drilling at Tønsberg hospital area, eastern Norway. First Break 35, No 8, 63-72.

http://topsoil.eu, aufgerufen 26. Oktober 2018

LEIBNIZ-INSTITUT FÜR ANGEWANDTE GEOPHYSIK

Direktor LIAG

Sachbearbeiterin

higo Socialad

(i.V. Dr. Thomas Wonik)

(Dr Helga Wiederhold)

Lage des Mess- und Testgebiets Schillerslage (roter Kreis) mit Lage des seismischen Profils (rote Linie).

Lageplan seismisches Profil im Mess- und Testgebiet Schillerslage. Zusätzlich zu den CMP-Punkten (blau) sind die eingemessenen Pflöcke (x [m]) eingezeichnet.

Auslegen des Landstreamers.

T

- 15 -

Landstreamer und seismische Quelle ELVIS (auf Schubkarre montiert).

Seismische Quelle ELVIS in Aktion (zur besseren Ankopplung mit einer Person beschwert).

T

- 16 -

<u> ÍA</u> G	Leibniz- Stilleweg 2, 3	Institu 80655 Han	nover	igewar	ndte (Seop	hysil	1
Area: Schill	erslage		Line Nr.: 1	D	ate: 19.4. 2	2018		
Operator: E	Bayerle		Crew: Wiede	•	S			
Recording: Inst. / Chann Sampleinterv Recording le Correlated Pre-amp gai	els: 124 /al / ms.: 1 ms /ngth / sec: 12 Noncorrela n / dB: 24	ated X	Aux Ch 1: Pi Aux Ch 2: M Aux Ch 3: ba Aux Ch 3: ba Aux Ch 4: St Aux Ch 5: Aux Ch 6:	ec.Ch.Nr.: ec.Ch.Nr.: ec.Ch.Nr.: ec.Ch.Nr.: ec.Ch.Nr.: ec.Ch.Nr.:	121 122 123 124			
Low Cut: HighCut: Notch:	HzdE Hz Hz	3/oct dB/oct						
<u>Source</u> : Source: ELV Sweep: 50-2 Spacing: 2 n	IS 7 20 Hz; 10 sec n		Geophones: Type: SM6 1 Group: Spacing: 1 m	10 Hz, SH-St	reamer	Spread m ^{Spread1} Ch	SP mm. H ▼ Ch	mm ⊢ ^{spread2} ⊣ ChCh
FFID	SP/VP	Stacks	Lat-Offs(m)	First Stat.	Last S	tat.	Ren	narks
9000 9001	1000			1001	1120	- +	20-160 Hz	
9002 9003 1000 1001	1300			1001	1120	+-	20-160 HZ	
1002 1003	1000			1001	1120		100 ms ta	ber
1004 1005	1002					Ch	an 97,98,99	liegen im Sand
1006 1007	1006						,,	
1008 1009	1008							
1010 1011	1010							
1012 1013	1012							
1014 1015	1014							
1018 1017	1016							
1020 1021	1020							
1022 1023	1022							
1024 1025	1024							
1026 1027	1026							
1028 1029	1028							
1030 1031	1030		+					
1034 1035	1032							
1036 1037	1034							
1038 1039	1038							
1040 1041	1040							
1042 1043	1042							
1044 1045	1044							
1046 1047	1046							
1040 1049	1040		+					
1052 1053	1052		1					
1054 1055	1054		+					
1054 1000	1034							
1006 1057	1056							
1058 1059	1058							
1060 1061	1060		ļ			Pfl	ock 150	
1062 1063	1062							
1064 1065	1064							
1066 1067	1066							
			1					

ſĨAG	Leibniz-I Stilleweg 2, 3	nstitu 0655 Hani	t für An g nover	gewan	dte Ge	oph	ysik	Seite 2
Area: Schille	erslage				Line N	lr.: 1	Date: 19.4	.2018
FFID	SP/VP	Stacks	Lat-Offs(m)	First Stat.	Last Stat.		Remarks	
1070 1071	1070			1001	1120			
1072 1073	1072							
1074 1075	1074							
1076 1077	1076							
1078 1079	1078							
1080 1081	1080							
108/ 1085	1084							
1086 1087	1086							
1088 1089	1088							
1090 1091	1090			1001	1120			
1092 1093	1090			1061	1180	Stream	er 60 m weiterg	jezogen
1094 1095	1092							
1096 1097	1094							
1098 1099	1096							
1100 1101	1098							
1102 1103	1100							
1104 1105	1102							
1108 1107	1104							
1110 1111	1108							
1112 1113	1110							
1114 1115	1112							
1116 1117	1114							
1118 1119	1116							
1120 1121	1118							
1122 1123	1120							
1124 1125	1122							
1126 1127	1124							
1120 1129	1120							
1132 1133	1120							
1134 1135	1132							
1136 1137	1134							
1138 1139	1136							
1140 1141	1138							
1142 1143	1140							
1144 1145	1142							
1146 1147	1144							
1168 1149	1146							
1100 1101	1168			1061	1190			
1154 1155	1150			1121	1240	Stream	er 60 m weiter	lezoden
1156 1157	1152			1.121	12-10	Susar		,
1158 1159	1154							
1160 1161	1156							
1162 1163	1158							
1164 1165	1160					Pflock	50 (Wegkreu	zung)
1166 1167	1162							
1168 1169	1164							
1170 1171	1100							
1174 1175	1170							
1176 1177	1172					schle	chter Untergr	und
1178 1179	1174					schle	chter Unteran	und
1180 1181	1176					schle	chter Untergr	und
1182 1183	1178					schle	chter Untergr	und
1184 1185	1180					schle	chter Untergr	und
1186 1187	1182							
1188 1189	1184							
1190 1191	1186							
1192 1193	1188							
1196 1197	1192					-		

ſĨAG	Leibniz- Stilleweg 2, 3	Institu 0655 Hani	t für An g nover	gewan	dte Ge	oph	ysik	Seite 3					
Area: Schille	erslage Line Nr.: 1 Date: 19.4												
FFID	SP/VP	Stacks	Lat-Offs(m)	First Stat.	Last Stat.		Remarks						
1198 1199	1194												
1200 1201	1196												
1202 1203	1198												
1204 1205	1200												
1206 1207	1202												
1210 1211	1204												
1212 1213	1208												
1214 1215	1210												
1216 1217	1210			1181	1300	Stream	er 60 m weiterg	gezogen					
1218 1219	1212												
1220 1221	1214												
1222 1223	1216												
1224 1225	1210												
1228 1229	1220												
1230 1231	1224												
1232 1233	1226												
1234 1235	1228												
1236 1237	1230												
1238 1239	1232												
1240 1241	1234												
1242 1243	1230												
1244 1245	1230												
1248 1249	1242												
1250 1251	1244												
1252 1253	1246												
1254 1255	1248												
1256 1257	1250												
1208 1209	1202												
1262 1263	1256												
1264 1265	1258												
1266 1267	1260												
1268 1269	1262												
1270 1271	1264												
12/2 12/3	1266												
1274 1275	1268												
1278 1279	1270												
1280 1281	1274												
1282 1283	1276												
1284 1285	1278												
1286 1287	1280												
1288 1289	1282												
1290 1291	1204			+									
1294 1295	1288												
1296 1297	1290												
1298 1299	1292												
1300 1301	1294												
1302 1303	1296												
1304 1305	1298			1101	1000	Destil	nda						
1306 1307	1300			1181	1300	Profile	nde						
				+		-							

Kurzbericht Seismik Schillerslage 2018

Vergleich Anregung mit verschieden frequenten sweeps (korreliert mit chan 121, Darstellung mit AGC 200 ms):

Links cfile 9000.dat und 9001.dat gestapelt (20-160 Hz), rechts cfile 1000.dat und 1001.dat gestapelt (50-220 Hz)

Kurzbericht Seismik Schillerslage 2018

Vergleich Anregung mit verschieden frequenten sweeps (korreliert mit chan 121, Darstellung mit AGC 200 ms):

Links cfile 9002.dat und 9003.dat gestapelt (20-160 Hz), rechts cfile 1306.dat und 1307.dat gestapelt (50-220 Hz)

I - 21 -

Kanal 121 (Referenzsweep der Vibratorsteuerung), unkorreliert, Abspielung 1 s, Skalierung: none, gain:0.05; bei cfile 1266.dat (source 267) und 1267.dat (source 268) ist die Polarisation vertauscht.

Kanal 123 (Beschleunigungsaufnehmer "Masse"), unkorreliert, Abspielung 1 s, Skalierung: none, gain:0.2.

Beispiel Einzelschuss (Schusspunkt 1003): links: nur AGC, Mitte: spektraler Ausgleich (48,54,200,220), rechts: zusätzlich F-K-Filter (200,350,50,220)

TOP - 24 -

Beispiel Einzelschuss (Schusspunkt 1043): links: nur AGC, Mitte: spektraler Ausgleich (48,54,200,220), rechts: zusätzlich F-K-Filter (200,350,50,220)

TOP - 25 -

Beispiel Einzelschuss (Schusspunkt 1101): links: nur AGC, Mitte: spektraler Ausgleich (48,54,200,220), rechts: zusätzlich F-K-Filter (200,350,50,220)

TOP - 26 -

Beispiel Einzelschuss (Schusspunkt 1141): links: nur AGC, Mitte: spektraler Ausgleich (48,54,200,220), rechts: zusätzlich F-K-Filter (200,350,50,220)

I - 27 -

Beispiel Einzelschuss (Schusspunkt 1297): links: nur AGC, Mitte: spektraler Ausgleich (48,54,200,220), rechts: zusätzlich F-K-Filter (200,350,50,220)

TOP - 28 -

Beispiel CMP-Familien (2050 bis 2550 in 50er Intervall) (3 benachbarte CMPs zusammengefasst): PreStack-Processing entsprechend Tabelle 3 (scaling: entire screen)

★ traceDisp File Vie	lay.exe	mation	Pickin	a FirstRi	reakPicker	-	er upper b	ares 180	diser. The							100.0	and the state													Help
	<u> G</u> illi	CDP	2051	g ma <u>t</u>	CURI ICACI	2100			215	in 🕨	 ₹ 2	201	 	2250	 	2311		 2 350	 	2401		•	2451		•	2500		 2550		Teth
	-	1						2.2		Å									1.00					£1, }		2000			E	
	50 -				Sinch.																				1.8					50
<u>a</u>	100 -																												-	100
	-																												Ē	150
	-																			R.E.									E	
	200 —														1				1				20.		die.		2.9	122	S E	200
	250 -				1			R a			1				1														i a la constante da la constante d constante da la constante	250
	300 -												<u>igos</u>																ŧ	300
	- 350 —								<u> (</u>)																				<u>e</u> e	350
						622																							Ø.	
	400 — - -														143														ST F	400
	450 -								20										1.1.1						6403				<u>s</u> t F	450
me (ms	500 -																								1				Ē	500 E
F	- - 550 —																												Ē	⊨ 550
																						ALL .							2 F	
	- 600 - -					62.53				155																			i an	600
	650 — -																						123		1	1			Ē	650
	700 -																												Ę	700
	- 750 —																				(C15)								<u>s</u> e f	750
		100																										1.447	E	000
	- 000					(hag)																			1.00				E F	000
	850 —														1							3.4			100				Ē	850
	900 — -																												Ę	900
	- 950 —					19.65																							<u>a</u> f	950
	-	1								ale ellet				127						-								Kan	Si F	
Amplitude	= -0.020	01172	Time = 6	38 ms OFI	SET = 59.	9946 CDP =	2150																							

Beispiel CMP-Familien (3 benachbarte CMPs zusammengefasst): PreStack-Processing entsprechend Tabelle 3 (scaling: entire screen), NMO-Korrektur (30% stretch mute)

K traceDisplay	y.exe w Animation Picking FirstBreakPicker			W. N. Jan Suntrac						Help
		2150	1 2250	2301	B350	2401	2451	2500	2550	Terb
	50 -		1 2230			2401	2451		2350	-50
	100	<u> </u>								
.	200		e e				<u> anna anna anna anna anna anna anna an</u>			
	250									
	300									
	300					Cases.				
	450									-450
Time (ms)	500									- 500 - 1 - 500 - 1 - 1
	600									
	650									- 650
	700									- 700
	750									
	850 -									
	900									- 900
	950									
Amplitude =	= 0.0623542 Time = 533 ms OFFSET = -40.0041 CDP = 2250									

Beispiel CMP-Familien (3 benachbarte CMPs zusammengefasst): PreStack-Processing entsprechend Tabelle 3 (scaling: entire screen), NMO-Korrektur (ohne stretch mute), manuell festgelegtes top und bottom mute

K traceDis	splay.exe			and a program	and the second second					Help
		2150	▶2201 25	2201	P250	2401	2451	▶ 2500	2550	Telb
	replayate <u>Animation Picking FirstBreakPicker</u> CDP 2051 2100 500 500 100 200 300 400 400 500 600 600 500 500 500 500 5									<u>Help</u> <u>Help</u> -50 -50 -100 -150 -150 -220 -300 -330 -350 -400 -400 -550 -550 -6600 -650
Amplitud	650									650 700 750 750

Beispiel Geschwindigkeitsanalyse (CMP 2150): a) Semblance-Analyse (100-700 m/s), b) CMP-Familie (9 CMPS kombiniert), c) Stapelungen mit verschiedenen Geschwindigkeitsfunktionen, d) CMP-Familie NMO-korrigiert, e) CMP-Familie NMO-korrigiert und mute angewendet

Geschwindigkeiten und Stapelsektion (Abspielung W (links) -> E (rechts); 500 ms)

velocity												
250	300	350	400	450	500							
	1111		1111	1111	1111							

Intervallgeschwindigkeit [m/s] für Migration und Tiefenwandlung: links: smoothed velocity field (Abspielung W (links) -> E (rechts); 500 ms) rechts: daraus abgeleitete single velocity function

Kurzbericht Seismik Schillerslage 2018

Gestapelte Zeitsektion in "wiggle trace" und "colour" Darstellung (Abspielung W (links) -> E (rechts); 500 ms)

Kurzbericht Seismik Schillerslage 2018

Migrierte Zeitsektion in "wiggle trace" und "colour" Darstellung (Abspielung W (links) -> E (rechts); 500 ms)

TOP SOIL - 36 -

Festlegen der Ersteinsätze für "refraction statics" am Beispiel der in Anlage 6 gezeigten Einzelschüsse (Schusspunkte 1003, 1043, 1101, 1141, 1297)

TOP SOIL

- 37 -

Ergebnisse der Refraktionsanalyse: Refraktorgeschwindigkeit und -tiefe

