Enzyme-assisted extraction and ultrafiltration of value-aded compounds from sour cherry wine pomace

Maria Cinta Roda-Serrat, Cecilie Lundsfryd, Simone Rasmussen, Rime B. El-Houri, Peter B. Lund and Knud V. Christensen

Dept. Of Chemical Engineering, Biotechnology and Environmental Technology University of Southern Denmark

FACULTY OF ENGINEERING

North Sea Region

European Regional Development Fund

EUROPEAN UNION

BIOCAS, circular BIOmass CAScade to 100%

- InterRegional project: The Netherlands, Belgium, Germany and Denmark ٠
- Vision of the project: To reach the complete utilization of biomass through an integral approach •
- Development of bio-cascades in which the waste from one process is the feed for the next •

M.C. Roda-Serrat

Anthocyanins as food additives and nutraceuticals

- Water soluble pigments (red-orange-purple hues)
- Common in fruits, berries, vegetables and some flowers
- Can substitute synthetic food colorants
- Reported health promoting effects

SDU 🍝

M.C. Roda-Serrat

- Can be recovered from some industrial biowaste streams

Cyanidin-3-O-glucoside

Recovery of anthocyanins from plant material

Extraction

- Conventional solvent extraction using methanol, ethanol or alcohol-water mixtures
- Extraction in aqueous solutions aided by:
 - Pressure (PLE)
 - Sonication (UAE)
 - Microwaves (MAE)
 - Enzymes (EAE)
- Supercritical solvent extraction

Purification

- Chromatography
- Membrane technology
- Co-precipitation with polymers

M.C. Roda-Serrat

Recovery of anthocyanins from plant material

Extraction

- Conventional solvent extraction using methanol, ethanol or alcohol-water mixtures
- Extraction in aqueous solutions aided by:
 - Pressure (PLE)
 - Sonication (UAE)
 - Microwaves (MAE)
 - Enzymes (EAE)
- Supercritical solvent extraction

Purification

- Chromatography
- Membrane technology
- Co-precipitation with polymers

M.C. Roda-Serrat

Enzyme-assited extraction of anthocyanins

- Degradation of the polysaccharides on the cell wall by a wide variety of enzymes:
 - Cellulases
 - Polygalacturonases
 - Beta-glucanases
 - Pectin lyases
- Effects reported
 - Increase in extraction efficiency
 - Decrease in the viscosity of the mash
 - Increase in filtration efficiency
 - Flavonoid glycosidase side activity: Anthocyanin degradation

SDU 🎓

Sour Cherry (Prunus Cerasus L.)

- It is mainly processed to juice, marmelade, liquour or wine due to its sour taste
- This results in the production of side streams that can potentially be valorised.
- Worlwide production: 1,199,139 tonnes (2017)
- Harvested area: 188,888 ha harvested (2017)

Source: Food and Agricultural Organization of the United Nations

ICheaP14, Bologna

27/05/2019

Case study: Sour cherry wine pomace

We refer to pomace as the residue after fermentation and pressing

Objective of the study:

- High extraction yield of anthocyanins and phenolic acids at a competitive cost
- Mild process to minimize degradation
- Compliance with current legislation, labelling, and market demands
 - Water-based process (avoiding, when possible, the use or organic solvents)
 - Purification strategy based in membrane filtration

Sour cherry wine pomace

M.C. Roda-Serrat

27/05/2019

Bio-cascade for sour cherry wine biowaste

Effect of the solvent on the extraction

Extraction for 60 minutes at 50°C using:

- Water
- Citrate-phosphate buffer pH 3.0, 50 mM
- Citrate-phosphate buffer pH 3.0, 150 mM
- Citric acid solution 50 mM

Quantification by HPLC

Calibration using external standards

Observations

- The extraction of AC is favoured at lower pH values
- The pH of the extraction mixture increases when adding the pomace, even when using buffered solutions
- The highest extraction yield was obtained using citric acid 50 mM (final pH 2.9)

Effect of the pomace dosage on the extraction

Methodology:

Extraction for 60 minutes at 50°C using:

- Citric acid solution 50 mM
- Dosages of 200 and 500 g/L

Observations

- A lower dosage of pomace results in increased amount of products extracted
- The dosage was not lowered further due to the already low concentration

Effect of enzyme addition on the extraction

Two commercial enzyme preparations were added to the reaction mixture at a dosage of 200 mL ton⁻¹

- Fructozym[®] Flash-C (Erbslöh) : blend of pectinases
- Celluclast[®] 1.5L (Novozymes) : single-enzyme product cellulase

27/05/2019

Observation

M.C. Roda-Serrat

The use of enzymes seems to be counter productive. Flavonoid glucosidase activity is suspected
SDU Image: SDU Image:

Enzyme side-activity essay

Filtered samples containing anthocyanins and phenolic acids were incubated for 24 hours at 50 °C

- Control sample
- Sample spiked with Fructozym[®] Flash-C 200 mL ton⁻¹
- Sample spiked with Celluclast[®] 1.5L 200 mL ton⁻¹

Observations

No degradation observed

M.C. Roda-Serrat

SDU 🍝

27/05/2019

Ultrafiltration set-up and parameters

The e-MBR: enzyme - Membrane BioReactor

Membrane information and filtration parameters	
Membrane cut-off	25 kDa
Membrane material	ZrO ₂
Manufacturer	Atech Innovations GmbH
Membrane area	0.011 m ²
Trans-membrane pressure	0.5 bar
Cross-flow velocity	3.0 m s ⁻¹

M.C. Roda-Serrat

SDU 🍲

27/05/2019

Ultrafiltration in presence of enzymes

Filtration performed on a Atech 25 kDa ZrO₂ tubular ceramic membrane

- The flux is relatively stable
- The use of enzymes results in higher permeate flux

M.C. Roda-Serrat

SDU 🍝

27/05/2019

Conclusions and perspectives

- Pomace from the sour cherry wine industry can be valorized to produce added-value extracts
- 82.1 ± 2.9 mg anthocyanins/kg and 48.6 ± 0.9 mg phenolic acids/kg were reported.
- The use of pectinases and cellulases seemed to result in lower extraction yields, even though enzymatic degradation was not reported.
- The use of enzymes resulted in an increased permeate flux during ultrafiltration
- Enzymes can be used as a pre-treatment for the ultrafiltration step to increase the process throughput
- Other biowaste streams from the same process need to be investigated
- Different enzyme dosages need to be tested to find an optimum
- A technoeconomical evaluation is needed to assess the feasibility of this biocascade

M.C. Roda-Serrat

SDU 🍝

27/05/2019

Acknowledgements

- Frederiksdal Kirsebærvin (Lolland, Denmark) for supplying the raw material
- Ersblöh and Novozymes for providing the enzyme formulations tested
- European Regional Development Fund as part of the Interreg North Sea Region project 38-2-4-17 BIOCAS, circular BIOmass CAScade to 100%

SDU 🎓 M.C. Roda-Serrat

27/05/2019

Thank you

European Regional Development Fund

EUROPEAN UNION

Maria **Cinta** Roda-Serrat Postdoctoral Researcher SDU-KBM **mcs@kbm.sdu.dk**

SDU &

SDU 🎓