

Height data collection of crops in greenhouses

Table of content

- Time line of the project
- Current status of the project
- Outlook

Time line of the project

Development of an user friendly access and evaluation system for growers

		Implementation of the system to a Linux based ARM-computer (RaspPi)	Addition of more cameras to the system	Adaption of the algorithms to multiple camera setup
Collection of height data (single depth camera)	Evaluation of height data an development of algorithms for image mosaicking		Collection of height data with Linux system (single depth camera)	Collection of height data with multiple cameras

Sep. Oct. Nov. Dec. Jan. Feb. Apr. Mar. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

• Collection of height data in 2020

- Evaluation of height data
- 1. Taking adjacent images
- 2. Images must have overlapping regions
- 3. Extraction of significant points in adjacent images
- 4. Matching between significant points
- 5. Transformation into a bigger mosaic images

ightarrow Mosaic images of the whole crop can be evaluated for height grow at different moments

Camera movement

Taking adjacent depth images

Extraction of significant points

- In a next step:
- \rightarrow Conversion of the 2D-depth images into 3D-images
- \rightarrow Stitching the 3D-images into a bigger mosaic image

Make the differences of height visible

Inspection of the growth at different moments

Tracking the growth of single plants?

Difference between 10 days of growth; red: low difference = slow growth, blue/green: high difference = fast growth^{\perp}

Live presentation HALCON (3D-visualization)

- Which information can we get from the height data?
- Analysis of the growth of whole crops
- Tracking single plants
- Identification of plants or regions in the greenhouse with lower growth rates
- Integration of height data with other parameters (eg. climate data)

Thank you for your attention!