

Wind Assisted Ship Propulsion "WASP"

WP4. D2.B. Educational/ Teaching Material

WASP is co-funded by the Interreg North Sea Region Programme 2014-2020 Total budget € 5.393.222 - ERDF contribution € 2.613.458 Priority 2: Eco-innovation: Stimulating the green economy

https://northsearegion.eu/wasp

Deliverable data

Deliverable No	2.B.			
Deliverable Title	Development of educational and training materials			
Work Package no: title	WP 4: Policy and viable business			
Deliverable type	New services			
Lead beneficiary	KLU			
Responsible author	Lara Pomaska			
Co-authors	WASP project consortium			
Date of delivery	08-04-2021			
Approved	Name (partner)	Date [DD-MM- YYYY]		
Peer reviewer 1	Tessa Remery (Boomsma Shipping)	11.03.2021		
Peer reviewer 2	Gavin Allwright (IWSA)	22.04.2021		

Document history

Version	Date	Description
First Draft	09.03.2021	[Example: First draft / Internal revision / Review, minor changes / Amendments following review / Final version]
Final version	22.04.2021	[Example: First draft / Internal revision / Review, minor changes / Amendments following review / Final version]
		[Example: First draft / Internal revision / Review, minor changes / Amendments following review / Final version]
		[Example: First draft / Internal revision / Review, minor changes / Amendments following review / Final version]

Content

- Wind Propulsion (WP)
- Introduction to WASP
- Applications of WASP in shipping
- WASP technology
- WASP adoptions of commercial ships
 Case study examples
- Green Transition towards decarbonization in maritime industry
- Barriers
- Regulation to promote wind technologies
- WASP Project overview • Key objectives and cycle Project structure WP3: Engineering of Wind Propulsion Technologies WP4: Overcome business and regulatory barriers Ships and installations WP5: Operating of Wind Propulation Technologies and performance Work Package Results Result and Output Indicators

Introduction

Key climate and environmental challenges for shipping

 Projected increase in CO₂ emissions conflicts with all UN climate goals

SUSTAINABLE GOALS DEVELOPMENT GOALS 17 GOALS TO TRANSFORM OUR WORLD					
^{NO} Poverty I∵ĤĤ iÎ	2 ZERO HUNGER	3 GOOD HEALTH AND WELL BEING	4 education	5 EENDER EQUALITY	6 CLEAN WATER AND SANITATION
AFFORDABLE AND CLEAN ENERGY	8 DECENT WORK AND ECONOMIC GROWTH	9 ADDISTRY, INNOVATION AND INFRASTRUCTURE	10 REDUCED INEQUALITIES	11 SUSTAINABLE CITIES	12 RESPONSIBLE CONSUMPTION AND PRODUCTION
3 action	14 Life Below water		16 PEACE, JUSTICE AND STRONG INSTITUTIONS	17 PARTINE RESIMPS FOR THE GOALS	SUSTAINABLE DEVELOPMENT GOALS

• Clean fuels increase fuel cost 3-4 times, which will keep ships fossil fueled

Heavy air pollution contributes significantly to morbidity and mortality

Challenges for shipping

• Strong pressure to reduce GHG emissions from shipping

Total: Refers to the absolute amount of GHG emissions from international shipping. Intensity: Carbon dioxide (CO₂) emitted per tonne-mile.

- Decarbonization can be achieved through viable options
 - Low carbon fuels and energy sources
 - Technology improvements
 - Operational measures

Wind Propulsion (WP)

Wind-Assisted Motor Vessels

Primarily employing auxiliary-wind propulsion systems retrofitted onto existing vessels. Fuel savings in the 10-30% range, with lower initial retrofit investment costs than new build options. Other benefits: reduced engine and machinery wear and tear, improved stability, reduction in vibration etc.

Hybrid Wind/Motor Vessels

Designs combine fuel and emissions reduction benefits of WP options with capabilities and performance of motor vessels allowing predictable scheduling. In favorable winds savings can be in excess of 60-70%, in less accommodating conditions vessels use a mix of wind/motor propulsion or motor alone. With good weather routing and handling. New build sailing hvbrid vessels: fuel savings on an annual basis of over 50%.

Motor vessel

Standard vessels that make up the vast majority of the current world fleet. Improvements in efficiency and savings in fuel costs and emissions: increasing size of vessels, improving hull design, increased engine efficiency, use of renewable energy options. Operational changes: slow steaming, super slow steaming.

Purely Wind Vessel (+Auxiliary Motor)

These vessels can deliver up to 100% savings, with standard maintenance costs etc. however the challenge of maintaining schedules and being susceptible to weather conditions is an important consideration. Some routes will be more favorable to this type of vessel and operation.

Weather Routing

The development of increasingly reliable weather/wind routing software helps to both predict, plan and operationally adjust sailing routes to maximize the benefits from wind and minimize the disruption from adverse weather conditions

Introduction to WASP

- Short- to mid-term mitigation option
- Can be defined as a group of technologies which harness wind power to thrust a vessel forward, providing auxiliary propulsion to the engine

- Fuel savings vary from 5-25% depending on ship size, type, speed, route, weather conditions etc.
- Can be combined with alternative fuels and other energy saving technologies

Opportunities of WASP

1. Reduce CO₂ emissions and air pollution from existing and future fleet

North Sea Region

ropean Regional Development Fund EUROPEAN UNION

NASP

- 2. Reducing the price gap between fossil fuelled ships and zero emission shipping
- 3. Reducing the investments and time needed for full decarbonization of shipping
- 4. Wind technologies reduce marine fuel use significantly

Applications of WASP in shipping

7

Interreg

North Sea Region

European Regional Development Fund EUROPEAN UNION

WASP

WASP Technology

Class notation (DNV GL)

Sail principle and technology

Magnus effect with rotor sail:

• When wind meets the spinning rotor sail, the air flow accelerates on one side of the rotor sail and decelerates on the opposite side of the rotor sail

• The change in the speed of air flow results in a pressure difference, which creates a lift force that is perpendicular to the wind flow direction

Considerations for WASP

Operational factors affecting the performance of WASP technology

Operational comparison between Rotors and Kites

				Kites	Flettner Rotors
Environme- ntal factors	On-board factors	Commercial factors	Absolute Power	Stronger winds at higher altitude	Slower winds at lower altitudes
- Wind speed	Route optimization	- Trade pattern	Volatility of Power	Most effective with wind aligning with navigation direction	Wider range of wind directions
- Wave height	Master's decision making	- Trip duration	Scalability	Less scalability compared with rotors	Power output increases linearly with number of installations
Seasonal pattern	Crew training	Trip irregularity	Wind direction	Most effective with tailwinds	Most effective with winds from side
		Port calls	Compatability with ship operation	Less deck space needed	Fundamental deck construction

WASP adoptions on commercial ships

Ship Name	Ship Type	DWT	Technology Characteristics	Ship Built Year ^c	Installation Year
Flettner-Rotor			No. of Rotors/Diameter (m)/Height (m)		
E-Ship 1 ^a	General Cargo/Ro-Lo	10,020	4/4/27	2010	2010
Estraden ^a	Ro-Ro	9700	$2/3^{b}/18$	1999	2014
Viking Grace ^a	Passenger	6107 ^c	1/4/24	2013	2018
Fehn Pollux ^a	General Cargo	4250	1/3/18	1997	2018
Maersk Pelican ^{a,b}	Tanker	109,647	2/5/30	2008	2018
Afros ^d	Bulk Carrier	64,000	4/-/-	2018	2018
Copenhagen ^e	Ferry	5088	1/5/30	2012	2020
Annika Braren ^f	General Cargo	5100	1/18/3	2020	Oct 2020 expected
SC Connector ^g	Ro-Ro	8843	2/35/5	1997	Q4 2020 expected
Kite			Kite's dimension (m ²)		-
Michael A. h	General Cargo	4884	160	1994	2008
BBC Skysails ⁱ	General Cargo	9832	320 ⁱ	2008	2008 ^j
Theseus ⁱ	General Cargo	3667	160 ^g	2009	2009 ^h
Aghia Marina ⁱ	Bulk Carrier	28,522	320 ⁱ	1994	2012 ^j
Ville de Bordeaux ^{k,l}	Ro-Ro	5200	500	2004	Nov 2020 expected
TBA ^k	Bulk Carrier	TBA (Capesize)	1000	TBA	2021 expected
Suction Wing			No. of wings/height (m)		*
Ankie ^m	General Cargo	3600	2/10	2007	2020
Frisian Sea ⁿ	General Cargo	6477	2/TBA	2013	2020
Rigid sails/wing sails			No. of foils/height (m)/width (m)		
MV Tharsis ^o	General Cargo	2364	2/9/3	2012	2021 expected
New Vitality P/q	Tanker	306,751	2/32/15	2018	2018
TBAr	Tanker	TBA(VLCC)	TBA	2022	2022

Case study example – Timberwolf (ex Maersk Pelican)

- LR2 Product Tanker 109,647 DWT; LOA: 245m
- 2 x 30m(h) x 5m(w) rotor sails by Norsepower in 2018
- Two Rotor Sails 30x5 are expected to reduce average fuel consumption on typical global shipping routes by 7-10%
- Verified average annual fuel savings: 8.2%
- Equivalent to approx.1,400 tonnes of CO₂
- Norsepower estimates that applying Rotor Sail technology to the entire global tanker fleet would reduce annual CO₂ emissions by more than 30 million metric tonnes, which corresponds to emissions of about 15 million passenger cars.

Case study – Theoretical techno-economic assessment

- Study assesses the installation of three Flettner rotor devices on a 19,500 DWT tanker operating in the North Sea
- Yearly averaged fuel savings: 29.5%
- Annual CO₂ reduction of 3,330 t
- Payback period of 9.7 years

Green Transition towards decarbonisation in the maritime industry

Dynamic transition

- "a gradual, continuous process of change where the structural character of a society transforms"
- Technological and institutional changes driven by the WASP technology take place at all three levels: socio-technical landscape, regimes, and niche
- With support from regimes and alterations in the regulatory environment, the "WASP industry" will continue to grow and create substantial economic & environmental impact

Transition process by Rotmans et al. (2001)

North Sea Region

European Regional Development Fund EUROPEAN UNION

WASP

Barriers for WASP technology

North Sea Region

European Regional Development Fund EUROPEAN UNION

WASP

Regulation to promote wind technologies

WASP Project overview

- WASP Project investigates wind solutions for the North Sea Region
 - Giving the market/policy makers clear indicators on operational parameters, fuel savings, business models and a collection of demonstrator vessels to highlight the wind-assisting propulsion potential
- Financed by Interreg North Sea Region, part of the European Regional Development Fund; Interreg NSR Priority: 'Eco-innovation: stimulation of the green economy'
- Brings together industry and research institutes to study and validate the performance/commercial viability of wind-assisted propulsion technologies
- Project period: 2019-2023
- 14 partners: Ship owners, wind propulsion technology providers, universities and expert partners are involved
 - Quadruple approach: 1. university; 2. industry 3. government; 4. community
- Transnational & cross-sectoral cooperation
 - worldwide, EU, national, regional, local
- 5 Work Packages: Dynamics, synergy, complementarity within/between cross-cutting themes and WPs
 - Mainstreaming, Engineering, Policy viable business, Operation

Project key objectives & cycle

 Wind Propulsion Technology proven concepts lead to greening of NSR sea transport

5 shipowners and charterers implement WPT on their ships, together with engineers and universities they optimize technologies. Based on real-life (operational and capital) performance data on different ship concepts, cargo's and wind conditions will be collected. They harvest WPT savings in the most attractive regional settings during operation.

• Identify the viable business cases for (hybrid) wind propulsion technologies

Third party validated performance indicators will measure WPT performances during real-life trials in different settings. Management data will feed into business models with operational - and capital costs analysis including incentives and investments concepts. A decision support model will support entrepreneurs to deploy WPT economic viable.

• Facilitate a level playing field for WPT with policy instruments

WASP facilitates inclusion of WPT in legal frameworks like IMO EEDI Energy Efficiency Design Index. With validated performance indicators, calculation of emission and fuel reduction will be quantified. These will help to include WPT in the EEDI and Emission Control Area legal frame works and management of split incentives.

Project structure

WP2: Objectives & Audience

WP3: Engineering of Wind Propulsion Technologies

Ship owners, their installations and (technology providers)

Objectives

- WP3 will prepare ship owners for the installation and operation of WPTs
- Objectives
 - Preparation of WASP participating vessels for operation with WPTs
 - Investigate the implications of using WPTs with simulation studies
 - Use the acquired knowledge to inform ship owners and maximize WPT potential
- WP3 is intended to present ship owners with a sufficient understanding of WPT operation and the possible savings that could be realized

WP4: Overcome business and regulatory barriers

Viable business case					
Key inves	stment	drivers			
•Bunker sav	vings	Brand value enh	nancement	•Green agenda	
Incentiviz	zation f	or WASP inve	estments		
 Policy mak 	ers	•Customers			
Risks					
•Technical, •Further exp	operationa	al, financial risks va s required	ry according to	technology	
Other co	nsidera	tions			
•Fast & effe •Communic	ective decis ation betw	sion making proces veen technical expe	ss erts & top mana	agement	
Other important stakeholders					
•Crew	•Insur	ance companies	•Classifi	cation societies	

Ships and installations

	Scheepvaartbedrijf van Dam	BOOMSMA		B	
Shipowner	Van Dam Shipping	Boomsma Shipping	Scandlines	Rörd Braren	Tharsis Sea- River Shipping
Country	The Netherlands	The Netherlands	Denmark	Germany	The Netherlands
Vessel	Ankie	Frisian Sea	Copenhagen	Annika Braren	Tharsis
Ship type	General cargo	General cargo	RoPax	Minibulker	General cargo
DWT	3,638 t	6,445 t	5,000 t	5,035 t	2,300 t
WPT	2 retrofit front- placed suction wings of 16 m	2 x Flatrack suction wings of 11 m	Flettner rotor	Flettner rotor	2 flexible wing sails
WPT Provider	eConowind	eConowind	Norsepower	ECO Flettner	eConowind
WPT installation	March 2020	January 2021	Sept 2020	April 2021	Q1 2021
Trials planned	O1 2021	O1 2021	O4 2020	2021	2021 21

Realized Installations

Boomsma Shipping MV Frisian Sea

Scandlines MV Copenhagen

Van Dam Shipping MV Ankie

Time lapse video of eConowind ventifoil installation: Van Dam Shipping MV Ankie

North Sea Region

European Regional Development Fund EUROPEAN UNION

WASP

Time lapse video of eConowind ventifoil installation: Boomsma Shipping MV Frisian Sea

North Sea Region

European Regional Development Fund EUROPEAN UNIO

WASP

WP5: Operating of WP Technologies and performance

Objectives

- Demonstrate the usability of WPT on vessels
- Develop methods and third-party validated performance indicators for independent evaluation of WPTs in general and assessing the performance of a number of WPTs with these indicators
- The real-life trials will be on existing shipping lanes with ships carrying freight; the only way to really measure cost, fuel and emission reductions
- By testing and assessing several WPTs in real life, on different vessel types and on various routes, knowledge & experience is expected to be gathered from the demonstrations as a base to understand under what conditions and in which circumstances WPT can be beneficial or non-beneficial
- These will provide credible data of WPT performances for new launching customers that will be included in decision support tools

Work Package Results

Result Indicators

Result Indicator			Unit	Definition		
WPT SAVED 5594 tonnes of heavy fuel oil	HFO Heavy Fuel Oil / Marine Diesel Oil saved with WP Technologies in operation on 1 ferry and 4 freight ships during the project period	5.594	Tonnes	Baseline are the 5 WASP ships sailing without WPT. Measuring starts with WPT in operation.		
WPT SAVED 17637 tonnes of CO2 reduction	CO ₂ reduction realized during the project period with WPT in operation, on 1 ferry and 4 cargo ships in operation during the project period	17.637	Tonnes	WASP performance indicators will be used. Measuring methods will be		
WPT GENERATED 27634805 KWH generated	KWH generated with WPT's in WASP during the project with WPT in operation, on 1 ferry and 4 cargo ships in operation during the project period	27.634.805	kWh	Control Area policies & Energy Efficiency Design index.		

North Sea Region WASP

Thank you for your attention!

https://northsearegion.eu/wasp/

References

- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. *Trans. Res. Part D Trans. Environ*, 52, 408–421.
- Chou, T., Kosmas, V., Acciaro, M., & Renken, K. (2021). A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology. Sustainability, 13(4), 1880.
- DNV GL (2018). Decarbonization in shipping. Available at: https://www.dnvgl.com/maritime/insights/topics/decarbonization-in-shipping/index.html [Accessed 24 January 2021]
- Nelissen, D., Traut, M., Koehler, J., Mao, W., Faber, J., & Ahdour, S. (2016). Study on the analysis of market potentials and market barriers for wind propulsion technologies for ships. European Commission, DG Climate Action, CE Delft, Delft.
- Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: Transition management in public policy. *Foresight-The Journal of Future Studies, Strategic Thinking and Policy*, 3(1), 15–31.
- Smith, T.; Raucci, C.; Hosseinloo, S.H.; Rojon, I.; Calleya, J.; De La Fuente, S.; Wu, P.; Palmer, K. (2016). CO2 Emissions from International Shipping. Possible Reduction Targets and Their Associated Pathways; UMAS: London, UK.
- van der Kolk, N., Bordogna, G., Mason, J., Bonello, J., Vrijdag, A., Broderick, J., Larkin, A., Smith, T., Akkerman, I., Keuning, J., Huijsmans, R. (2019). Wind-Assist for Commercial Ships: A Techno-Economic Assessment. Available at: https://www.researchgate.net/publication/335542956_Wind-Assist_for_Commercial_Ships_A_Techno-Economic_Assessment [Accessed 22 January 2021]
- von Wirén, J. (2019). Norsepower Rotor Sails confirmed savings of 8.2 % fuel and associated CO2 in Maersk Pelican project. Available at: https://maersktankers.com/newsroom/norsepower-rotor-sails-confirmed-savings [Accessed 25 January 2021]