
An autoencoder wavelet based deep neural network
with attention mechanism for multi-step prediction of

plant growth

Bashar Alhnaitya,∗, Stefanos Kolliasa, Georgios Leontidisa, Shouyong Jianga,
Bert Schampb, Simon Pearsonc

aSchool of Computer Science, University of Lincoln, Brayford Pool, Lincoln, UK
bPCS Ornamental Plant Research, Schaessest raat 18, Dest elbergen, Belgium

cLincoln Institute for Agri-Food Technology, University of Lincoln, Riseholme, Lincoln, UK

Abstract

Multi-step-ahead prediction is considered of major significance for time series

analysis in many real life problems. Existing methods mainly focus on one-

step-ahead forecasting, since multiple step forecasting generally fails due to

accumulation of prediction errors. This paper presents a novel approach for

predicting plant growth in agriculture, focusing on prediction of plant Stem Di-

ameter Variations (SDV). The proposed approach consists of three main steps.

At first, wavelet decomposition is applied to the original data, so as to facilitate

model fitting and reduce noise. Then an encoder-decoder framework is devel-

oped using Long Short Term Memory (LSTM) and used for appropriate feature

extraction from the data. Finally, a recurrent neural network including LSTM

and an attention mechanism is proposed for modelling long-term dependencies

in the time series data. Experimental results are presented which illustrate the

good performance of the proposed approach and that it significantly outper-

forms the existing models, in terms of error criteria such as RMSE, MAE and

MAPE.
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1. Introduction

Time-series analysis and prediction has been a research topic of significance

in various fields and real-life applications, including smart agriculture and pre-

diction of plant growth, forecasting of financial stocks, anomaly, or intrusion,

detection, medical imaging and air pollution prediction [15, 2, 1]. Time series5

data are generally produced as series of observations aggregated in chronological

order. Their complexity is generally quite high, which makes their analysis a

very challenging task [18]. Due to this nature, using shallow machine learning

and neural network models to analyze the data has produced many bottlenecks.

As a consequence, the development and use of more complex models, which can10

automatically extract and learn deep representations from time-series, or image

data, has been a topic of major recent work [37, 28, 4, 6, 5, 3].

Recently, Deep Learning (DL) models have produced great progress in agri-

cultural tasks, such as crop management and plant growth analysis. Plants,

like other bio-systems, are highly complex and dynamic systems. Modelling15

plant growth dynamics is a unique challenge, due to large data variations, e.g.,

related to scale of interest, level of description, or integration of environmental

parameters [2].

Multi-step-ahead time series prediction refers to prediction of the time series

in multiple time steps ahead into the future. In comparison with one step ahead20

prediction, multi-step-ahead prediction can provide additional benefits to grow-

ers; it is, however, more challenging task as it has to address various additional

complications [42, 45]. In the literature, there are three primary strategies for

managing multi-step-ahead prediction tasks: the recursive strategy, the direct

strategy and the multiple output prediction strategy. The recursive strategy is25

based on consecutive one-step-ahead forecasts; each step ahead prediction uses

previously forecasted values as inputs. Recursive strategy methods have few

drawbacks, such as error accumulation. The direct strategy predicts separate

models for each forecast. Other techniques on hybrid direct-recursive strategies.

Moreover, there is the multi-output model strategy, which is designed to fore-30
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cast the entire time series ahead, in one shot. All strategies include challenges

that need to be tackled [44].

This paper proposes a novel deep learning direct strategy approach for ef-

fective prediction of plant growth. It consists of three components: Wavelet

Transformation (WT), encoding-decoding based on the LSTM model, and pre-35

diction using LSTM with an attention mechanism. WT can assist in smooth-

ing the noise effect existing in time series data. The encoder-decoder (ED)

part can extract appropriate features from the reconstructed smoothed signal;

these features form a compact representation, exploited in the final prediction

step. A model composed of LSTM units is blended with Attention Mecha-40

nism (AM), in order to implement the final prediction of plant growth. The

resulting approach is named WT-ED-LSTM-AM hereafter. The effectiveness

of the WT-ED-LSTM-AM model is validated using real datasets provided by

European greenhouses. Moreover, the obtained results are compared with those

achieved when using Support Vector Regression (SVR), Random Forest Regres-45

sion (RFR), standard Long-Short Term Memory (LSTM) networks, multi-layer

perceptrons (MLP), and networks with gated recurrent units (GRU). An ab-

lation study has also been implemented, by removing either the wavelet trans-

form part (ED-LSTM-AM method), or the attention mechanism part (WT-ED-

LSTM method).50

In summary, the main contributions of this paper are the following:

• A novel architecture for multi-step prediction of plant growth and stem di-

ameter variations, including wavelet transformation, data encoding-decoding

and an LSTM with attention components.

• Improved performance in multi-step prediction on real life data sets, when55

compared with baseline models and state-of-the-art methods.

The remainder of this paper is organised as follows: Section 2 presents related

work. Section 3 describes the proposed pipeline and the utilized models and

components. Section 4 provides a detailed presentation of the proposed WT-

ED-LSTM-AM approach. Section 5 presents the developed experimental study.60
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Finally, Section 6 provides conclusions and suggestions for future work.

2. Related Work

This section provides a short description of existing machine learning predic-

tion models applied to horticulture, and in particular, to plant growth analysis,

which is crucial for smart farming [47].65

Data-driven models (DDM) that are used in signal processing include Ma-

chine Learning (ML) models, such as Generalized Linear Models, Artificial Neu-

ral Networks [14] and Support Vector Machines [34]. Those methods have many

desirable characteristics, such as: imposing few restrictions and assumptions;

ability to approximate nonlinear functions; strong predictive capabilities; flex-70

ibility to adapt to multivariate system inputs [9]. According to [39] machine

learning, linear polarisation, wavelet-based filtering, vegetation indices and re-

gression analysis are the most popular techniques used for analyzing agricultural

data. Deep Learning (DL) has obtained great popularity in the last few years

[22]. DL involves Deep Neural Networks (DNNs), which can extract hierar-75

chical feature structures and create rich representations of the data. A strong

advantage of DL is feature learning, i.e., automatic feature extraction from raw

data, with features from higher levels of the hierarchy being formed through

composition of lower-level features [22]. Consequently, DL can solve complex

real life problems with high accuracy [32], provided there is availability of ad-80

equately large data-sets describing the problem. Gonzalez-Sanchez et al. [21]

presented a comparative study of ANN, SVR, M5-prime regression, K-nearest

neighbor classifiers and Multiple Linear Regression for crop yield prediction

in ten crop datasets. In their study, Root Mean Square Error (RMSE), Root

Relative Square Error (RRSE), Normalized Mean Absolute Error (MAE) and85

Correlation Factor (R) were used as accuracy metrics to validate the models.

Results showed that M5-Prime regression achieved the lowest errors across the

produced crop yield models. The results of that study ranked the techniques

from best to worst, as follows: M5-Prime, kNN, SVR, ANN, MLR. Another
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study by [10] applied four ML techniques, SVM, Random Forest (RF), Ex-90

tremely Randomised Trees (ERT) and Deep Learning (DL) to estimate corn

yield in Iowa State. Comparison of the validation statistics showed that DL

provided the more stable results, overcoming the over-fitting problem. In the

current paper (and in [2]) we develop a novel deep learning architecture for

prediction of plant growth, using stem diameter variation as a growth indicator.95

Stem diameter is considered a parameter of major importance that describes

the growth of plants during vegetative growth stage. The variation of stem di-

ameter has been widely used to derive proxies for plant water status and, is

therefore used in optimisation strategies for plant-based irrigation scheduling in

a wide range of species. Plant stem diameter variation (SDV) refers to plant100

stem periodic shrinkage and recovery movement during day and night. This

periodic variation is related to plant water content and can be used as an in-

dicator of the plant water content changes. During active vegetative growth

and development, crop plants rely on the carbohydrate gained from photosyn-

thesis and the translocation of photo-assimilates from the site of synthesis to105

sink organs [48]. The fundamentals of stem diameter variations have been well

documented in the literature [46]. It has been documented that SDV is sensitive

to water and nutrient conditions and is closely related to the response of crop

plants to changes of environmental conditions [27]. Moreover, stem diameter is

a parameter that describes the growth of crop plants under abiotic stress during110

vegetative growth stage. Therefore, it is important to generate stem diameter

growth models able to predict the response of SDV to environmental changes and

plant growth under different conditions. Many studies emphasize the need to

critically review and improve SDV models for assessment of environmental im-

pact on crop growth [25]. SDV daily models have been developed to accurately115

predict inter-annual variation in annual growth in balsam fir (Abies balsamea

L). Inclusion of daily data in growth-climate models can improve prediction

of the potential growth response to climate by identifying particular climatic

events that escape to a classical dendroclimatic approach [17]. However, devel-

opment of models that are capable of predicting SDV and plant growth taking120
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into consideration environmental variables has so far remained limited.

Since horticulture management decisions become data-driven, DL is contin-

uously gaining popularity as one of the most successful techniques to model

obtained data. In this paper, we propose a DL model and a new approach

for multi-step prediction of plant growth using wavelet transformation (WT),125

encoder-decoder based on LSTM and RNN-LSTM prediction with an attention

mechanism and we evaluate its performance on real plant growth data.

3. Problem Definition and Components

3.1. Problem definition

The aim of a model for single step time series prediction, T , is to implement

a mapping from a sequence of input data, (x0,x1, ...,xt), to a single output

target value, yt+1:

ˆyt+1 = T (x0, ...,xt) (1)

where xt is generally an M -dimensional vector, with elements (xt(0), ..., xt(M−

1)) and xt(i), yt ∈ R; ŷt is the estimate of the target value yt. Eq. 2 shows a

multi(k)-step prediction:

(ŷt+1, ...ŷt+k) = T (x0, ...,xt) (2)

Model T is usually estimated through supervised learning with direct strat-130

egy for multi-step prediction, using a collection of training data and respective

labels.

3.2. Wavelet transform

The Wavelet transform can be used for data denoising, while handling the

non-stationary nature of the collected time series data. In the following we

use the wavelet transform for representing, decomposing and reconstructing the

original data. Wavelet analysis was firstly introduced by Mallat [31] and since

then has been used in various domains for signal processing [33], image recog-

nition [23], remote sensing data decomposition [35], time series decomposition
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[16], medical image analysis and medical diagnosis [40]. The Discrete Wavelet

Transform decomposes signals into a low frequency approximation set and sev-

eral high frequency detailed sets. Thus the original time series, represented as

X = [x0, ...,xN−1] with N = 2J , is transformed as shown in Eqs. 3 and 4 :

Wϕ(j, n) =
1√
N

∑
k

xkϕj,n(k) (3)

Wψ(j, n) =
1√
N

∑
k

xkψj,n(k) (4)

where j = 0, 1, ..., J − 1, k = 0, ..., N − 1 and n = 0, 1, ..., 2j − 1; ϕ and

ψ represent the wavelet function and the scaling function, respectively. Mallat

proposed filtering the time series using a pair of high-pass and low-pass filters

as an implementation of discrete wavelet transform. There are two types of

wavelets, father wavelets ϕ(t) and mother wavelets ψ(t), in the Mallat algorithm.

Father wavelets ϕ(t) and mother wavelets ψ(t) integrate to 1 and 0, respectively,

which can be formulated as:∫
ϕ(t)dt = 1,

∫
ψ(t)dt = 0 (5)

The mother wavelets describe high-frequency parts, while the father wavelets

describe low-frequency components of a time series. The mother wavelets and

father wavelets in the j level can be formulated as:

ϕj,k(t) = 2−
j
2ϕ(2−j − k) (6)

ψj,k(t) = 2−
j
2ψ(2−j − k) (7)

Time series data can be reconstructed by a series of projections on the mother

and father wavelets with multilevel analysis indexed by kε {0, 1, 2, ...} and by

jε {0, 1, 2, ..., J}, where J denotes the number of multi-resolution scales. The

orthogonal wavelet series approximation to a time series x(t) is formulated by:

x(t) =
∑
k

sJ,kϕJ,k(t) +
∑
k

fJ,kψJ,k(t) +
∑
k

dJ−1,k(t) + ...+
∑
k

d1,kψ1,k(t) (8)
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where the expansion coefficients sJ,k and dJ,k are given by the projections

sJ,k =

∫
ϕJ,kx(t)dt (9)

dj,k =

∫
ψj,kx(t)dt (10)

The multi-scale approximation of time series x(t) is given as:

SJ(t) = ΣksJ,kϕJ,k(t) (11)

Dj(t) = Σkdj,kψj,k(t) (12)

Then, the brief form of orthogonal wavelet series approximation can be denoted

by:

x(t) = SJ(t) +DJ(t) +DJ−1(t) + .+D1(t) (13)

where SJ(t) is the coarsest approximation of the input time series x(t). The

multi-resolution decomposition of x(t) is the sequence of SJ(t), DJ(t), DJ−1

(t), ...D1(t). To reconstruct the original series, Eq. 14 is used:

xk =
1√
N

∑
n

Wϕ(j, n)ϕj,n(k) +

∞∑
j=j

∑
n

Wψ(j, n)ψj,n(k) (14)

There are several wavelet families, such as Daubechies (dbN), Coiflets (CoifN)

and Symlets (symN). In this paper we use db2 to decompose the original series135

into one approximation and two detail sets.

3.3. Support vector regression

Support vector regression (SVR) technique is a prediction method that arises

from a nonlinear generalization of the Generalized Portrait algorithm developed

by Vapnik [13]. The goal of SVR is to obtain a linear function f(x) =< w, x >

+b with wεRN and bεR for a given training set {(x1, y1), ..., (xm, ym)} as follows:
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minimize
1

2
‖w‖2 + c

m∑
i=1

(ξi + ξ∗1)

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(15)

where ξi and ξ∗i are slack variables introduced to deal with infeasible constraints

and C is called the regularization parameter. In most cases, the problem can

be solved in its dual formulation:

maxa,a∗ −
1

2

N∑
i=1

N∑
j=1

(ai − a∗i )(aj − a∗j )K(xi − xj)

−ε
N∑
i=1

(ai − a∗i ) +

N∑
i=1

yi(ai − a∗i )

subject to:

N∑
i=1

(ai − a∗i ) = 0, ai, a
∗
i ε [0, C]

(16)

where K(xi, xj) is known as the kernel function, which allows the projection of

the original data to a higher dimensional space, so as to become linearly sepa-

rable. Common kernel functions include the linear, radial basis and polynomial

ones. among these, Radial Basis Function (RBF) provides dimensionality reduc-

tion, restricting the computational load during training and providing improved

generalization capabilities. For these reasons, RBF kernel has been adopted, de-

fined as follows:

K(x, xi) = exp

(
− 1

σ2
‖x− xi‖2

)
(17)

where x and xi are vectors in the input space, i.e., vectors of features from the

training or test datasets.

3.4. Random forest regression140

Random forest regression (RFR) belongs to the category of ensemble learning

algorithms. As a base learner of the ensemble, RFR uses decision trees. The
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idea of ensemble learning is that multiple predictors can be more effective in

making predictions over the test data, distinguishing noise from patterns. RFR

constructs independent regression trees, with a bootstrap sample of the training145

data being chosen at each regression tree. As a consequence, the regression tree

continuously grows until it reaches the largest possible size. Final prediction is

a weighted average of all regression trees predictions [8].

3.5. Multilayer perceptrons

Multilayer Perceptrons (MLP) [24] have been the main architecture used for150

supervised learning and classification tasks in the past; they consist of multiple

fully connected layers of neurons, with feedforward spread of information. Their

training is performed with the backpropagation algorithm.

3.6. Long-short term memory

Long short-term memory (LSTM) is a variation of the recurrent neural155

network (RNN) architecture [26]. They have been able to solve the gradi-

ent vanishing problem in long-term time series analysis. The LSTM structure

contains three modules: the forget gate, the input gate and the output gate.

The forget and input gates control which part of the information should be re-

moved/reserved to the network; the output gate uses the processed information160

to generate the provided output. LSTMs also include a Cell State, which allows

the information to be saved for a long time. In the following, we illustrate the

operation of LSTM units.

Let it and c̃t be the values of the input gate and the candidate state of the

memory cell at time t, respectively. These are computed as follows:165

it = σ(Wixt + Uiht−1 + bi) (18)

c̃t = tanh(Wcxt + Ucht−1 + bc) (19)
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Let us denote by ft and ct the value of the forget gate and the state of

memory cell at time t. These are, respectively, calculated by:

ft = σ(Wfxt + Ufht−1 + bf ) (20)

ct = it ∗ c̃t + ft ∗ ct−1 (21)

Let, also, ot and ht denote the values of the output gate and memory cell at

time t, respectively. These are computed as follows:

ot = σ(Woxt + Uoht−1 + Voct + bo) (22)

ht = ot ∗ tanh(ct) (23)

where xt is the input vector to the memory cell at time t; Wi,Wf ,Wc,Wo,

Ui, Uf , Uc, Uo and Vo are weight matrices; bi, bf , bc and bo are bias vectors;

3.7. Gated recurrent units

Gated recurrent units (GRU) are simplified LSTMs. They do not include

output gates, thus there is no control over the memory content. They can be170

used instead of LSTMs. Further information can be found in [12].

3.8. LSTM encoder-decoder models

In LSTM Encoder-Decoder models, the encoder part compresses the infor-

mation from the entire input sequence into a vector composed of the sequence of

the LSTM hidden states. Consequently, the encoder summarizes the whole in-175

put sequence into the final cell state vector and passes it to the decoder [30, 43].

The latter uses this representation as initial state to reconstruct the time series,

denoted as st in Fig. 1.
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Figure 1: LSTM encoder decoder architecture.

3.9. Attention mechanisms

Attention mechanisms have been used as a means to improve performance

in vision and signal processing tasks, by focusing on feature segments of high

significance [36]. They are currently implemented through attentive neural net-

work models [20, 49, 19, 38, 11, 41]. Bahdanau et al [7] introduced an attention

mechanism to model a long-term dependence, by generating a context vector as

a weighted sum of all provided information. In this paper, the attention mech-

anism is used both across the different internal LSTM layers, as well as over

the LSTM output layers. Prediction of the output signal can be derived using

the conditional probability distribution of the input signal and of the previous

sample of the output signal, i.e.,

p(yi | x1, ...,xi−1, yi−1) (24)

This distribution is, however, impossible to compute in most real life cases. For

this reason, Eq. 24 is approximated by the non-linear function:

g(yi, hi, Ci) (25)
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where g is the LSTM function, hi is the internal state of the LSTM and Ci

is the current context, i.e., a vector holding information of which inputs are

important at the current step. The context is derived from both the current

state, hi, and the input sequence x. After the LSTM has stepped through

the whole input sequence, the attention mechanism of the network decides the

attention that should be put on the annotation provided at each step. The

transition functions of the attentive neural network are described by Eqs. 26-

28. The attention mechanism begins by computing et:

et = vT . tanh (We.ht + Ue.dt−1 + b) (26)

where v, b, ht, dt−1 ∈ Rn and We, Ue ∈ Rn∗n and d stands for the input sequence

x. The attention score, at,t′ , for each t′, is computed by the softmax function,

as follows:

at,t
′

=
exp(et)∑T
j=1 exp(ej)

(27)

The context vector, Ct, is computed as the weighted sum of all internal LSTM

states:

Ct =

T∑
t′=1

at,t
′
.ht′ (28)

4. The Proposed Method180

4.1. Setting up the prediction framework

In the following, we use the models and methods, described in the previous

Section, in a novel deep prediction framework. The proposed architecture (WT-

ED-LSTM-AM) includes wavelet-based transformation of the collected signals,

followed by an encoding-decoding step, using LSTM and attention models for185

final prediction.

Figure 2 shows the proposed approach for SDV multi-step prediction. The

target is to predict SDV in multiple hourly steps ahead, based on current infor-

mation and history sensory signal data.
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Figure 2: Deep model architecture (WT-ED-LSTM-AM) for SDV prediction.

4.2. The WT-ED-LSTM-AM architecture190

The proposed WT-ED-LSTM-AM architecture for plant growth predictionis

shown in Figure 2, being composed of five steps:

• Step 1: Data denoising is performed first, using the wavelet transform

(WT). In particular, we decompose each input signal in two components,

generating a subsampled (by 2) time series approximation and eliminating195

noise that is present in the high frequency component. By upsampling (by

2) and filtering, a reconstructed signal is obtained, which is provided to

the next step of our approach.

• Step 2: The encoder-decoder stage is then implemented. The encoder

is pre-trained to extract useful and representative embeddings from the200

reconstructed time series data (xt); these embeddings can be used next
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for prediction purposes. Two-layer LSTM cells are used in the encoder

implementation. Based on the learned embedding states, the decoder

learns to generate the (reconstructed) input signal. We designed this step,

inspired by the success of video representation learning, where a similar205

architecture was introduced [43].

• Step 3: The encoder-decoder step constitutes the feature extraction com-

ponent of the proposed approach. Then, an LSTM network, with attention

mechanism, is trained to make single, or multi-step prediction, using the

learned embedding as input features. LSTMs use the transition functions210

{h1, h2, ..., hn} of the embedding states learned in Step 3.

• Step 4: As shown in Figure 2, the attention mechanism is applied to the

outputs of each LSTM unit to model a respective long-term dependence.

The learned embedding states, the attention weights corresponding to

these states, and the respective context, are computed as described in the215

previous Section, are used for implementing the attention mechanism.

• Step 5: A single layer neural network is responsible for the final prediction

of the SDV value, as described in Eq. 30.

hs = tanh(WpC +Wxhn) (29)

ŷ = Wshs + bs (30)

5. The Experimental Study

An extensive experimental study has been carried out to evaluate the per-

formance of the proposed approach, targeting supervised multi-step prediction

of SDV in real-world data sets. The obtained results illustrate the effectiveness220

and efficiency of the proposed approach in predicting the SDV.
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5.1. Experimental set up

The proposed architecture was used to predict growth of Ficus plants (Ficus

benjamina), based on data collected from four cultivation tables in a 90 m2

greenhouse compartment of the Ornamental Plant Research Centre (PCS) in225

Destelbergen, Belgium. Plant density was approximately 15 pots per m2, where

every pot contained cuttings.

The experiment started on 23 March 2016. Greenhouse microclimate was

set by controlling the window openings, a thermal screen, an air heating sys-

tem, assimilation light and a CO2 adding system. Plants were irrigated with an230

automatic flood irrigation system, controlled by time and radiation sum. Set-

points for microclimate and irrigation control were similar to the ones used in

commercial greenhouses. The microclimate of the greenhouse was continuously

monitored. Photosynthetic active radiation (PAR) and CO2 concentration were

measured with an LI-190 Quantum Sensor (LI-COR, Lincoln, Nebraska, USA)235

and a carbon dioxide probe (Vaisala CARBOCAP GMP343, Vantaa, Finland),

respectively. Temperature and relative humidity were measured with a tem-

perature and relative humidity probe (Campbell Scientific CS215, Logan, UT,

USA), which was installed in a ventilated radiation shield.

Stem diameter was continuously monitored on three plants with a linear240

variable displacement transducer (LVDT, Solartron, Bognor Regis, UK) sensor.

The hourly variation rate of stem diameter (mm d−1) was calculated as the

difference between the current stem diameter and the stem diameter recorded

on one hour earlier, at a given time point. Thus, the frequency of collected data

has been at one hour basis.245

We performed experiments on one-step, two-step and three-step forecasting.

In one-step-ahead forecasting, we used input data collected in previous 15

hours, to predict the SDV value in the current hour.

In two-step-ahead, i.e., 6 hours forecasting, we used input data collected in

the previous 6 hours, with a 6-hour stride.250

In three-step-ahead, i.e., 12 hours forecasting, we used the previous 12 hours,

with a 12-hour stride.
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In all experiments, we used the first 70% of data samples as training set, the

next 10% of data samples as validation set and the rest 20% of data samples as

test set.255

5.2. Performance evaluation

The Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE)

and the Mean Absolute Percentage Error (MAPE) were used to evaluate the

performance of prediction models. Formulas of these measures are shown below:

RMSE =

√√√√ 1

n

n∑
t=1

(
At − Ft
At

)2

(31)

MAE =
1

n

n∑
t=1

|At − Ft| (32)

MAPE =
1

n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (33)

where At denotes the actual values and Ft the predicted values.260

5.3. Feature normalization

In all experiments we used min-max normalization (min-max scaling) on

the extracted features, re-scaling their values in the range [0, 1] through the

following formula:

gi =
fi −min(f)

max(f)−min(f)
(34)

where gi and fi are the values of the normalised and original i − th feature

and min(f) and max(f) are the minimum and maximum values of the original

features.

5.4. Experimental results265

The experimental results illustrate the very good performance of the pro-

posed methodology, which outperforms all considered baseline methods. For

comparison purposes, we used the same hyper-parameters in the proposed ap-

proach and in three baseline models: a two-layer stacked GRU, a LSTM and
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a MLP with Stochastic Gradient Descent (SGD); learning rate ls = 0.001 and270

batch size = 32 were adopted. All models were trained for 100 epochs, using the

same training, as well as validation and test data sets. In the proposed method,

we used a two layer LSTM encoder-decoder structure, with 128 and 32 neurons

respectively. In the prediction model, we used a single layer LSTM with 128

neurons. Figure 3 illustrates minimization of the MSE per epoch during the275

training phase of all models, in all three prediction tasks.
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Figure 3: Training comparison of the different models at each epoch.

The obtained accuracy in terms of the three error criteria for the multi-step

prediction tasks is shown in Table 1.

Steps One Step (1hr) Two steps (6hr) Three steps (12hr)

Models

Error
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SVR 0.65 0.46 4.47 0.70 0.55 2.40 0.82 0.67 1.50

RFR 0.74 0.52 8.31 0.66 0.51 3.27 0.72 0.57 1.80

MLP 0.0034 0.0023 2.72 0.0045 0.0029 2.20 0.0048 0.0027 1.63

GRU 0.0031 0.0022 3.43 0.0039 0.0026 2.74 0.0080 0.0040 1.93

LSTM 0.0031 0.0022 3.27 0.0033 0.0024 2.46 0.0054 0.0031 1.60

WT-ED-LSTM 0.0028 0.0020 2.60 0.0033 0.0026 2.61 0.0042 0.0034 1.46

ED-LSTM-AM 0.0074 0.0034 3.397 0.0030 0.0031 2.45 0.0046 0.0032 1.40

Proposed 0.0026 0.0017 2.14 0.0028 0.0021 2.03 0.0029 0.0023 1.35

Table 1: Performance of the proposed and baseline models for multi-step prediction
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Let us first dsicuss the one step prediction results.

The performance of the LSTM and GRU models for one-step-ahead predic-

tion were very similar, with the LSTM model showing an (edge) improvement280

over GRU one, as far the MAPE criterion was concerned. The MLP model per-

formance was lower than LSTM and GRU when considering RMSE and MAE

criteria; it scored better than the LSTM and GRU when MAPE criterion was

considered.

The proposed approach (WT-ED-LSTM-AM) outperformed all baseline mod-285

els on all multi-step prediction tasks. Figure 4 illustrates this achievement, over

prediction steps ranging from 1 to 12.

0 2 4 6 8 10 12
Steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

RM
SE

0 2 4 6 8 10 12
Steps

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

M
AE

0 2 4 6 8 10 12
Steps

0

2

4

6

8

M
AP

E

Comparison of the predictive performance of the different models at each step Proposed
LSTM
MLP
GRU
ED-LSTM-AM
WT-ED-LSTM
SVR
RFR

Figure 4: Comparison of the predictive performance of the different models at each step.

Figure 5 shows the accuracy of Ficus growth one-step prediction by all meth-

ods for about 600 data samples. It can be seen that the proposed model suc-

cessfully performs one-step ahead prediction, outperforming the other methods290

and providing accurate estimates of almost all peak values in the original data.

In addition, to compare the distribution of the prediction errors provided

by the baseline models with that of the proposed approach, we performed a

statistical analysis of them. The histograms of the produced one-step-prediction

errors are shown in Figure 6. It can be seen that in the proposed approach, close295

to 57% of predictions resulted in prediction errors around 0.00 and the remaining

43% prediction errors ranging between -0.010 and 0.015.

Let us now discuss the results obtained in two-step prediction.

These results are shown in Table 1. The proposed approach outperformed

all baseline models, providing lower RMSE, MAE and MAPE values in this case300

as well. Fig. 7 shows that almost all peak original values are precisely predicted
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Figure 5: Obtained accuracy in one-step prediction of Ficus growth (SVD) by the proposed

and baseline methods

by the proposed approach.

The resulting histograms for two-step-prediction errors are shown in Fig. 8.

In the proposed approach, close to 77% of predictions resulted in prediction

errors between -0.004 and 0.002; the remaining 23% of prediction errors ranged305

between -0.008 and 0.008. This greatly outperformed the other baseline models.

The proposed approach also provided a superior three-step-ahead prediction.

In Fig. 9, it can be seen that all baseline models failed to capture the peak

at data sample 14, with the proposed approach providing much better estimates

of the targeted values than the baseline models. Fig. 10 shows the prediction310

error distributions for all baseline models, as well for the proposed approach.

It shows that close to 56% of predictions provided by the proposed approach,

produced prediction errors between -0.002 and 0.002; the remaining 44% of

prediction errors ranged between -0.006 and 0.006. In this case, as well, the

proposed method outperformed all other baseline models.315
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Figure 6: Error distribution for one step prediction (1 hour ahead)
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Figure 7: Obtained accuracy in two-step prediction of Ficus growth (SVD) by the proposed

and baseline methods

6. Conclusions and Future Work

This paper proposed a novel multi-step-ahead time series prediction ap-

proach. The first step of the proposed method has been to use a wavelet

transform to decompose and smooth the original data. As a consequence, a

better model fitting could be achieved on the reconstructed signals. The second320

step introduced an encoder-decoder framework based on LSTMs, which man-

aged to effectively produce appropriate features for multi-step prediction. The

third step which used LSTMs coupled with an attention mechanism was able to

successfully implement the prediction tasks.

The proposed approach was used for multi-step-ahead prediction of Ficus325

Benjamina stem diameter variations, providing high prediction accuracy.

Real-world data have been collected and formed datasets that were used to

evaluate the proposed methodology. Hourly time intervals were used in the input

data, as well in our multi-step-ahead predictions. Comparisons were carried out,

over these real-world data, with state-of-the-art baseline models, showing that330

the developed approach provides much better prediction results.
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Figure 8: Error distribution for two step prediction (6 hours ahead)
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Figure 9: Obtained accuracy in three-step prediction of Ficus growth (SVD) by the proposed

and baseline methods

A topic of future research is to merge the data driven approach presented

in this paper with knowledge-based ones, especially for modelling the context,

i.e., the relations among the considered variables; we will be adapting former

research of ours in merging symbolic and subsymbolic approaches [29].335
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