



European Regional Development Fund

EUROPEAN UNION

Smartgreen

## PCS Ornamental Plant Research

Interreg North Sea Region

# **Trials in MLS**



#### **Past trials**

#### **Current trials**

- Cultivation of indoor plants, e.g. *Chlorophytum*, several *Calathea* species, *Zamioculcas*...
- Germination of Primula seeds
- Rooting of cuttings e.g. Chrysanthemum, Ilex sp., Rhododendron sp., Azalea japonica & Camellia
- Cultivation of several exotic indoor plants (Bromeliads, *Tillandsia*, *Clusia*, *Nepenthes*, *Calathea* sp., ...)
- Hardening of bamboo

- Cultivation of Amaryllis
- Hardening of bamboo



# Hardening of tissue culture plants

- 3 treatments:
  - 40 µmol/m<sup>2</sup>.s
  - 80 µmol/m².s
  - 120 µmol/m<sup>2</sup>.s
- => Improved quality (color, staining, compactness)?
- 14 different plant species
- Bromeliads (i.a. Vriesea, Guzmania, ...), Aloe vera, Tillandsia, Nepenthes, Echeveria, Clusia, Philodendron, Dieffenbachia, Calathea **PCS**









# Echeveria



## 40 µmol/m<sup>2</sup>.s

## 80 µmol/m².s



# Nepenthes



## 40 µmol/m<sup>2</sup>.s

80 µmol/m².s









## 40 µmol/m<sup>2</sup>.s

80 µmol/m<sup>2</sup>.s





# Aloe



## 40 µmol/m<sup>2</sup>.s

## 80 µmol/m².s



# **Rooting of Chrysanthemum**

- Influence of 9 light recipes on:
  - Rooting
  - Quality (bud formation, elongation, homogeneity)
- Day length of 16 h
- •4 different cultivars









# **Rooting of Chrysanthemum**

- •9 treatments:
  - 100 % blue light
    - 50 µmol/m<sup>2</sup>.s
  - 75 % blue, 25 % red
    - 100 µmol/m².s
    - 50
    - 25
  - 50 % blue, 50 % red
    - 50 µmol/m².s

- 25 % blue, 75 % red
  - 100 µmol/m<sup>2</sup>.s
  - 50
  - 25
  - 100 % red
    - 50 µmol/m<sup>2</sup>.s





## • Roots & growth after 3 w.





# •Cultivar 1:

- $-100 \mu mol/m^2.s = too much$ 
  - Smaller, lighter colour, leaves unevenly
- 100 % red = too much elongation

– Best:

- 75 % blue 25 µmol/m<sup>2</sup>.s
- 25 % blue 25 µmol/m<sup>2</sup>.s

=> more compact and more uniform than in the greenhouse







# • Cultivar 2:

- A lot of bud formation, branching, edges on the leaves
- 75 % blue, 25 µmol/m<sup>2</sup>.s
  best combination, but
  quality of greenhouse
  grown was better quality





# • Cultivar 3:

- Sensible for elongation, growth inhibitors already 2 x used in greenhouse
- Bad quality:
  - 25 % blue, 50 & 100 µmol/m<sup>2</sup>.s
  - 100 % red
- Best:
  - 75 % blue, 25 µmol/m<sup>2</sup>.s more leaves, internodes, even batch
  - 100 % blue, 50 µmol/m<sup>2</sup>.s









- •Cultivar 4:
  - Best:
    - 75 % blue, 25 µmol/m<sup>2</sup>.s





# Conclusion



- Better quality in MLS
- 75 % blue, 25 µmol/m<sup>2</sup>.s gives the best quality, even though these cuttings have less rooting



#### © PCS | Smartgreen August 2021

# **Rooting of Chrysanthemum: part 2**

- •9 treatments:
  - 75% blue, 25 % red
    - No FR
    - 5 µmol FR
    - 10 µmol FR
    - 15 µmol FR
    - At night: 2 µmol red + FR
    - ~ Philips LED flowering lamp

- -25% blue, 75 % red
  - No FR
  - 5 µmol FR
  - 10 µmol FR
  - At night: 2 µmol red + FR







# Rooting of Fargesia

- Fargesia robusta 'Pingwu': very difficult to root
- 3 treatments:
  - 80 % red, 20 % blue 45 µmol/m<sup>2</sup>.s PAR
  - 70 % red, 20 % blue, 10 % FR 40,5 µmol/m<sup>2</sup>.s
    PAR
  - $-\,80$  % red, 20 % blue  $-\,65\,\mu mol/m^2.s$  PAR



# **Dynagrow trials**



- Dynagrow What?
  - Control software for greenhouse lighting based on
    - Assimilation lighting with DLI set point
    - Expected electricity prices
    - Weather forecast (sunlight)
- In cooperation with SDU
- Dynagrow introduced in Oct. '20 @ technical committees

////// PCS

# Dynagrow



## Cut roses

- 2 compartments 116 m<sup>2</sup> with gutters and double screening
- Hortiled (85 R/5 B/10 W) 120 µmol/m<sup>2\*</sup>s
- 2 cultivars (Avalanche & Jumilia)
- Growth, production, quality under LED
- DLI 22 = No optimisation possible during darker months due to low light levels (lamps + sun light)
- Minimum night of 6h





## Dynagrow





- Outdoor light [W m^2] - El. prognosis prices [EUR/MWh] - Historical outdoor light forecast [W m^2] Light status [on/off] - PAR sum day goal [mol m^2] - Achieve PAR sum balance [Satisfaction]

## We need a better light forecast!







- In April (W13-W16) we saved 20% energy (production results are visible 4-5 weeks later)
- Savings in spring and autumn
- Go further with lower DLI = more optimization
- New experiment will start in September with daily registration of the DLI in the control



## **Projectpartners**



EUROPEAN UNION

# Landwirtschaftskammer Niedersachsen













UNIVERSITY OF LINCOLN



SDU 4 ENERGY INFORMATICS

**Oueen**<sup>®</sup>

POTPLANTENKWEKERIJ **DIRK MERMANSI** 

