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Abstract

Background: Microorganisms are not only indispensable to ecosystem functioning, they are also keystones for
emerging technologies. In the last 15 years, the number of studies on environmental microbial communities has
increased exponentially due to advances in sequencing technologies, but the large amount of data generated
remains difficult to analyze and interpret. Recently, metabarcoding analysis has shifted from clustering reads using
Operational Taxonomical Units (OTUs) to Amplicon Sequence Variants (ASVs). Differences between these methods
can seriously affect the biological interpretation of metabarcoding data, especially in ecosystems with high
microbial diversity, as the methods are benchmarked based on low diversity datasets.

Results: In this work we have thoroughly examined the differences in community diversity, structure, and
complexity between the OTU and ASV methods. We have examined culture-based mock and simulated datasets as
well as soil- and plant-associated bacterial and fungal environmental communities. Four key findings were revealed.
First, analysis of microbial datasets at family level guaranteed both consistency and adequate coverage when using
either method. Second, the performance of both methods used are related to community diversity and sample
sequencing depth. Third, differences in the method used affected sample diversity and number of detected
differentially abundant families upon treatment; this may lead researchers to draw different biological conclusions.
Fourth, the observed differences can mostly be attributed to low abundant (relative abundance < 0.1%) families,
thus extra care is recommended when studying rare species using metabarcoding. The ASV method used
outperformed the adopted OTU method concerning community diversity, especially for fungus-related sequences,
but only when the sequencing depth was sufficient to capture the community complexity.
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Conclusions: Investigation of metabarcoding data should be done with care. Correct biological interpretation
depends on several factors, including in-depth sequencing of the samples, choice of the most appropriate filtering
strategy for the specific research goal, and use of family level for data clustering.

Keywords: Soil, Rhizosphere and endosphere microbiome, Metabarcoding analysis, OTU, ASV

Background
Microorganisms play a number of key roles in soil eco-
system functions [1]. Unraveling the microbial commu-
nities that reside in soil systems and on plant root-soil
interfaces is important for increasing sustainability in
agriculture [2–4]. Tremendous progress in DNA sequen-
cing technologies has allowed for analysis and insight
into the composition and behavior of microbial commu-
nities in various environments. Currently, metabarcoding
is often used to gain insight into the structure and dy-
namics of microbial communities through analysis of the
relative abundances and taxonomical diversity within
samples [5, 6]. With the advent of these technologies,
the newest research challenges are in the area of data
analysis and interpretation.
Recently, the shift from the use of Operational Taxonom-

ical Units (OTUs) to Amplicon Sequence Variants (ASVs)
has been one of the major modifications in classification of
DNA sequences when analyzing metabarcoding experi-
ments [7, 8]. In OTU analysis, microbial DNA sequences
are clustered together in one OTU by means of a similarity
threshold (usually 97%), assigning sequences to species and
higher taxonomic levels [9, 10]. This approach has historic-
ally dominated the field. Various algorithms and thresholds
can be used to calculate OTUs, with the use of diverse
microbiome analysis tools such as QIIME, UPARSE and
Mothur [11–13]. Although OTU calling consolidates se-
quences that differ because of sequencing and amplification
errors, it cannot account for small biological variations.
Taxonomically different sequences can be clustered into
one OTU, but this can disregard the real biological se-
quence variation. Recent data analysis methods have
attempted to overcome this drawback by determining the
output reads into ASVs [14]. ASV workflows partition the
reads based on error models to correct sequencing errors
while also accounting for abundance and sequence similar-
ity [7]. In this way, ASV calling can detect small biological
sequence variants and discard technical errors introduced
by library preparation and sequencing technology, this in-
creases the taxonomical resolution of the results [15]. The
possibility does exist, however, that real biological variations
are classified as technical errors, especially when data qual-
ity is insufficient or the dataset is too small.
The choice of either a clustering or error-model based

method will affect the biological interpretation and the con-
clusions of metabarcoding experiments [15–19]. The choice

of method also strongly affects the reported microbial di-
versity and richness. Previous research has confirmed that
OTU and ASV methods are not always consistent for alpha
diversity measurements [19, 20], but despite this clearly
documented influence, variations in differential abundances
caused by treatments or sample types have not yet been
systematically analyzed (Fig. 1a, b).
Our aim was to dissect the assessment differences in

community diversity, structure, and complexity and to
describe their influence on the formulation of biological
conclusions when using either an OTU vs. ASV method
to analyze the datasets. We based our analysis on two of
the most prominent methods in the field: an OTU-
clustering method using the USEARCH-UPARSE work-
flow and an error-model based ASV method by the
DADA2 workflow [14, 21]. We hypothesized that the
chosen method affects alpha diversity measurements and
detected relative abundances, leading to different bio-
logical interpretations of the same datasets. Additionally,
we hypothesized that the different occurrences between
methods could be due to either (i) specific settings in
the preprocessing or (ii) the fundamental variations in
the read partitioning, i.e., threshold (OTU) vs. error
model (ASV).
To illustrate these differences, we first analyzed bacter-

ial and fungal culture-based microbial communities and
simulated datasets. These datasets were then used to val-
idate the performance and taxonomic resolution of both
methods. In addition, we investigated the differences in
biological interpretation of bacterial and fungal soil- and
plant-related microbial communities at family level as
analyzed using both the OTU and ASV methods. These
soil- and plant-related datasets have higher diversity and
are less well identified than the human-related commu-
nities that are often used to benchmark metabarcoding
workflows [11, 14]. For the soil and plant communities,
the effect of non-inversion vs. conventional tillage and
rhizosphere vs. endosphere were analyzed, respectively.

Results
We compared an OTU calling (97% similarity threshold)
and an ASV (error model) method by first validating the
performance and sensitivity of the methods using simu-
lated and culture-based mock datasets of bacterial and
fungal communities. Next, we studied the alpha diversity
and differential abundances of bacterial and fungal
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communities in soil and plant-related datasets. To dis-
tinguish between differences caused by preprocessing or
read partitioning, an additional workflow (usASV) was
developed that combines the USEARCH filtering and
merging with the ASV error model (Fig. 2) that was used
for the culture-based mock and biological datasets. No
sequencing or PCR errors were introduced into the
simulated mock dataset, showing that the results of the
usASV were similar to those of the ASV and warranted
no further discussion.

ASV and OTU methods in simulated dataset and culture-
based mock bacterial communities
The sensitivity of both methods was first validated using
a simulated dataset of the bacterial community. In total,
20 bacterial communities were simulated from the
SILVA 16S rRNA gene reference database [22]. Simu-
lated libraries varied from low (100 or 500 unique se-
quences) to high community richness (1000 or 2500
unique sequences) with alternating sequencing depth.
These simulated datasets were analyzed using the OTU,
ASV, and usASV methods.
Community richness (defined by the number of ASVs)

and diversity (measured by the Shannon diversity index)
were both slightly lower in the OTU method than in the
ASV method for all sequencing depths in the simulated
datasets (Fig. 3). In both methods, richness was

estimated quite accurately in samples with a low com-
munity richness. For a true 100 species richness, the
OTU and ASV methods estimated a richness of 89.0 ± 1
and 95.0 ± 1, respectively, whereas for a true 500 species
richness, 475.0 ± 3 ASVs and 414.1 ± 2 OTUs were
found. In samples with higher true richness, both
methods underestimated the richness (Fig. 3). For a true
richness of 1000 species, the OTU and ASV methods es-
timated a richness of 800 ± 19 and 885 ± 82, respectively.
For a richness of 2500 sequences, 1678 ± 205 OTUs and
1753 ± 595 ASVs were estimated. However, when se-
quencing depth was high enough (> 50,000 sequences),
the ASV method outperformed the OTU method in the
samples with higher community richness. Similarly, se-
quencing depth and sample richness were highly corre-
lated in the ASV method, leading to an underestimation
of the community richness at lower sequencing depths
in diverse bacterial communities (Fig. 3). Additionally, a
plateau in the richness curves was noticed for both the
ASV and OTU methods.
Besides alpha diversity, we also studied the community

composition of the simulated datasets (Fig. 3). For data
aggregated at family level or higher, both methods per-
formed equally well in assigning the correct taxonomy,
with over 75% of the OTUs/ASVs being correctly identi-
fied. At genus level, the coverage decreased in both
methods to below 50% for the ASV method. This might

Fig. 1 Differences between the ASV and OTU methods for Shannon diversity and differentially abundant families in a bacterial soil dataset.
a Shannon diversity per treatment (treatments 1 and 2) for each method. Samples are displayed as dots (n = 16). Asterisks indicate significant
differences between diversity measurements (P < 0.05). b Selected families of the bacterial soil dataset with their respective relative abundance
per treatment for the ASV and OTU methods. The presence of dots above the families indicate a significant effect of the applied treatment (FDR
5%) and the dot size corresponds to the logFC. The light and dark blue color marks a decrease or an increase in relative abundance, respectively.
The gray boxes are families found to be significant in both methods
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be due to a higher number of unclassified ASVs
(39.7% ± 6.1%) in the low-level taxonomy than the
number of unclassified OTUs (9.1% ± 2.8%) (Fig. 3).
A bacterial culture-based mock dataset was used to

better resemble environmental samples. These culture-
based mock communities were obtained by pooling 254
strains from a bacterial collection before DNA extraction
and sequencing. In addition to the OTU and ASV
method, the usASV method was applied to the culture-
based mock. Similar to the observations of simulated
data, the richness and diversity of OTUs were remark-
ably lower than those of ASVs (Fig. S1 A, B). This is
likely due to sequences of different strains that are clus-
tered together as one OTU in the culture-based mock.
In total, 84 ± 4 ASVs, 45 ± 1 OTUs, and 82 ± 4 usASVs
were identified instead of the actual 254 strains (Fig.
S1B). In addition, the taxonomy assignment of the
culture-based mock communities (V3-V4 region) was
compared with the taxonomy determined on the
complete 16S rRNA gene of the isolated strains in the
bacterial collection. The number of correctly identified
bacterial taxa, false positives, and false negatives were
similar to family level, i.e., 15 of the 22 families were
identified in all three methods. Only at genus level, the
OTU method performed slightly better than the ASV
method (22 of the 31 genera were identified, one more
than for the ASVs) (Table S1).
In conclusion, the ASV method made a better estima-

tion of sample richness and diversity for both low and

high diversity samples compared to the OTU method
when the sequencing depth is high. The performance of
both methods is comparable for taxonomical classifica-
tion up to family level.

Differences between ASV and OTU methods in soil-
related bacterial communities
The bacterial community was isolated from samples of
Belgian field soil where non-inversion and conventional
tillage were applied [23]. These communities are referred
to below as the soil dataset. This dataset was studied by
applying either ASV, usASV, or OTU methods. The un-
filtered ASV method supplied fewer ASVs than OTUs,
although the difference was rather limited (11,492 ASVs
vs. 13,407 OTUs); in contrast, the usASV method was
characterized by 21,282 usASVs (Table S2). After appli-
cation of technical filtering to remove spurious se-
quences (fewer than two counts in at least three
independent samples), a decrease of approximately 70%
in the number of ASVs detected for both the ASV and
usASV methods. This was mainly due to the removal of
unique sample sequences, in contrast to the number of
OTUs (decrease of 15%) (Table S2).
In contrast to our observations of the simulated data-

set and culture-based mock, the community diversity of
the soil dataset was significantly lower using the ASV
method (6.55 ± 0.34) than the OTU (7.37 ± 0.1) and
usASV (7.23 ± 0.29) method (P < 0.001) (Figs. 1 and 4a).
In addition, the community richness of ASVs was on

Fig. 2 Overview of datasets, methods, and data analyses used
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average five-fold (P < 0.001) and two-fold (P < 0.001)
lower than that of the OTUs and usASVs, respectively
(Fig. 4b). The usASVs were still two-fold lower than of
the OTU output (P < 0.001), indicating less strict mer-
ging and filtering of the OTU method. Remarkably, the
ASV richness reached a plateau after a sequencing depth
of 12,000 sequences, whereas the OTU richness contin-
ued to increase, in contrast to the simulated data and
culture-based mock, even beyond a sequencing depth of
125,000 sequences (Fig. 4b). Furthermore, the number of

detected ASVs was correlated with the sequencing
depth, i.e., the number of ASVs increased with enhanced
sequencing depth as observed in the simulated data. The
same correlation and curve flattening were observed for
the usASVs but not for the OTUs; this hints at the influ-
ence of the ASV read partitioning (Fig. 4b). For all
methods, neither Shannon diversity nor richness differed
between treatments (P > 0.05).
An additional, more stringent abundance filtering was

applied (at least two per sample in at least three

Fig. 3 Representation of the species richness, diversity, and coverage for the simulated bacterial dataset either analyzed by the ASV method (red)
or OTU method (blue). Datasets are simulated from the SILVA 16S rRNA gene database with an original community richness varying between 100
(light colored) and 2500 (dark colored). Top panels, Shannon diversity index per original sample richness; middle panels, community richness with
increasing sequencing depth; the bottom panels, coverage of each method per taxonomic level
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independent samples) before the data were grouped at
family level, in order to retain the best performing taxo-
nomic resolution as identified with the simulated data
and culture-based mock (Table S2). The resulting bac-
terial community composition was examined. Between
the ASV and OTU method, 143 families overlapped, but
40 families were found exclusively in the OTU method.
Two of the unique OTU families were also detected
using the usASV method. The unique OTU families
were all low abundant, ranging from 0.006 to 0.01%
mean relative abundance (RA) in the bacterial commu-
nity. Originally, most of these families occurred in the
ASV dataset but had been removed by abundance filter-
ing. Four families (Algiphilaceae, mle1–27, Demequina-
ceae, and Isosphaeraceae) were truly absent from the
ASV dataset.
Differential abundances at the family level, a result of

different tillage practices, were compared for all methods
(Fig. 5 and S2). For the ASV method, a significant differ-
ence between non-inversion tillage and conventional till-
age was found for 30 families, 15 of which showed an
increased RA when conventional tillage was applied
(False Discovery Rate [FDR] < 0.05). Using the OTU
method, conventional tillage significantly altered the RA
of 104 families (FDR < 0.05) with increased RA for 58

families. Using the usASV method, RA of 58 families
changed significantly with increased RA for 30 families
(FDR < 0.05). The larger proportion of significant fam-
ilies in the OTU method was mainly due to low abun-
dant families (RA < 0.1%). Between the ASV and OTU
dataset, only 27 significant families overlapped; 23 of
these families had an RA higher than 0.1% and displayed
the same increase or decrease in RA (Fig. 5 and S2).
Across all three methods, 23 families were significantly
differentially abundant; these families were predomin-
antly more abundant (22 families with RA > 0.1%) (Fig.
S2). In comparison, 100 families were found to be high
abundant (RA > 0.1%) across all methods. Of the 77 fam-
ilies with sole significance in the OTU method, 24 over-
lapped in the usASV method, illustrating that
preprocessing (filtering and merging of USEARCH) was
responsible for approximately 30% of the uniquely sig-
nificant families present in the OTU method. Of all sig-
nificant families in the OTU dataset, three families were
completely absent in the ASV dataset.
As low abundant families caused the largest difference

between both methods, the analysis was redone only on
families with an RA higher than 0.1 and 0.5% (Table S3).
When the 0.1% filtering was applied, 30 and 61 families
were significantly differentially abundant for the ASV

Fig. 4 Shannon diversity and richness versus sequencing depth of ASV, OTU, and usASV methods in the bacterial soil dataset. a Shannon
diversity for Treatment 1 (non-inversion tillage) versus Treatment 2 (conventional tillage) for each method. Samples are displayed as dots (n = 16).
b For each method, richness with increasing sequencing depth (n = 16) for both treatments
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and OTU methods, respectively, with an overlap of 26
families. For the 0.5% filtering, 15 families overlapped,
with 18 and 30 significantly differentially abundant fam-
ilies for the ASV and OTU methods, respectively.
Differences in the biological inference of the treatment

effect were observed between the ASV and OTU
methods. The reasons for these variations could, in part,
be due to the filtering and merging of USEARCH, but
could also be substantially the fundamental differences
in the error model used for ASVs and the 97% similarity
threshold for OTUs.

Differences between ASV and OTU methods in plant-
related bacterial communities
To confirm the results of the soil dataset and to evaluate
the differences in metabarcoding methods on samples
with reduced diversity, we examined the bacterial com-
munities of a root-related dataset, referred to below as
the plant dataset. This dataset contained bacterial se-
quences of two plant-related compartments, the rhizo-
sphere, i.e., the soil closely surrounding the root, and the
endosphere, i.e., the inside of the plant root of field soil-
grown maize (Zea mays L.) [24].

Fig. 5 Differences between the ASV, OTU, and usASV methods in bacterial communities in the soil dataset. Selected families of both methods are
shown with their respective relative abundance per treatment (n = 16) (for all significant families, see Fig. S2). The data are split into high (RA
> 0.001) and low (RA < 0.001) relative abundance families. The dots above the families indicate a significant effect of the applied treatment (FDR
5%) and the dot size corresponds to the logFC. The light and dark blue colors mark decrease and increase in relative abundance, respectively.
The gray boxes are families found significant in all three methods
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Similar to the soil dataset, the detected number of
ASVs was lower than OTUs, both before and after filter-
ing (less than two counts in three independent samples)
and after removal of plant-related reads (Table S2). In
contrast, the number of ASVs detected using the usASV
method was located between the number of the two
other methods, both before and after the filtering steps
(Table S2).
Both Shannon diversity and richness were signifi-

cantly lower in the ASV method than in the OTU
and usASV methods, in accordance with the soil
dataset but in contrast to the simulated and mock
datasets (P < 0.001) (Fig. 6a, b). In most samples, the
richness of the ASV and the usASV methods seemed
to be correlated with the sequencing depth, but was
less than for the bacterial soil dataset (Fig. 6b). The
Shannon diversity and community richness was sig-
nificantly higher in the rhizosphere compared to the
endosphere for all methods (P < 0.05) (Fig. 6a, b).
The bacterial community structure between the rhizo-

sphere and endosphere were further analyzed at family

level to study the best-performing taxonomy based on our
previous results. For the bacterial community structure
analysis, the abundance filtered data (at least two counts
per sample in at least four independent samples) were ex-
amined. Using the ASV, OTU, and usASV methods, 86,
168, and 157 families were detected, respectively (Fig. S3
and Table S3). Only one bacterial family, the Rhodobia-
ceae, was absent in the OTU method. The RA of this fam-
ily, although still low, was remarkably higher in the usASV
samples (0.11% ± 0.004 for the rhizosphere and 0.071% ±
0.02 for the endosphere) than in the ASV samples
(0.041% ± 0.03 and 0.038% ± 0.02 for rhizosphere and
endosphere, respectively) (Table S4). All remaining ASV
families were detected in the other two methods as well.
Similar to the soil dataset, the 22 unique OTU families ab-
sent in the ASV and the usASV methods were low abun-
dant, with an RA below 0.5%. Additionally, 12 families
were only detected by the usASV method and not by ei-
ther the OTU or ASV methods. In total, 145 families were
detected in the usASV and OTU methods, whereas only
85 of these occurred in the ASV method. These findings

Fig. 6 Shannon diversity and richness verus sequencing depth of ASV, OTU, and usASV methods in the bacterial plant dataset. a Shannon
diversity per compartment, rhizosphere, and endosphere, for each method. Samples are displayed as dots (n = 10). b For each method, richness
with increasing sequencing depth (n = 10) for each compartment of the plant dataset

Joos et al. BMC Genomics          (2020) 21:733 Page 8 of 17



can be attributed to the same merging and filtering steps
of USEARCH that were applied, instead of the ASV vs.
OTU calling.
After identifying the families in the bacterial com-

munities, differential abundances between rhizo- and
endosphere samples were compared. The ASV
method resulted in 32 families that were significantly
enriched or depleted in the endosphere, in contrast to
151 and 83 differential families for the OTU and
usASV methods, respectively (FDR < 0.05). In total, 24
families were significantly different in all three
methods (FDR < 0.05). To illustrate the differences be-
tween the methods, we focused on the families Ery-
throbacteraceae, MND8, Sphingomonadaceae, and
Xanthomonadaceae, which appeared to be depleted in
the endosphere in all methods (Table S4). The de-
tected depletion was significant (FDR < 0.05) in the
ASV method for all four families, significant for only
MND8 in the usASV method, with no significant de-
pletion found at family level when analyzed using the
OTU method (Table S4). The Erythrobacteraceae and
MND8 families had both a relative abundance below
1% in all three methods in the rhizo- and endosphere,
while the Xanthomonadaceae and the Sphingomona-
daceae had an RA of > 1% (Table S4).
Three families that were significantly differential in the

usASV method were completely absent in the OTU
method. Furthermore, 17 other families were detected as
significantly differential in the usASV method, but not
in the OTU method. Except for three families, namely
0319_6G20, Archangiaceae, and MND8, all the signifi-
cant families detected with the ASV method were also
significant in the usASV method.
Most of the differences between the three methods

were related to families with a very low RA. As for the
soil dataset, low-abundant families were filtered out
(RA < 0.1%; Table S3). The ASV method resulted in
fewer than 50% of the families in comparison to the
OTU table (86 vs. 186 families), while after the 0.5% fil-
tering, 70% of the families counted in the OTU method
were found in the ASV method (29 vs. 41 families).
The trend of fewer ASVs than OTUs was also detected
when the number of differentially abundant families
was analyzed. Based on these results, we can conclude
that the method used affected the discovered differences
in RA between the rhizosphere and endosphere com-
munities. The main differences of the methods were
attributed to families with a low RA (< 0.1%).

Differences between ASV and OTU methods in simulated
fungal data, culture-based mock dataset and soil-related
communities
To study the effect of methods on fungal datasets, we
analyzed a simulated community, a culture-based mock

and a soil-related fungal dataset using the three
methods. Fungal datasets were simulated from the
UNITE database (v7), accounting for differences in com-
munity richness and sequencing depth [25]. In addition,
a fungal culture-based mock community containing 13
known plant pathogens was analyzed. Using the ASV
method, the simulated fungal data had a higher diversity
and richness than in the OTU method, which was again
highly correlated with the sequencing depth (Fig. S4).
However, in the fungal culture-based mock community,
richness was overstated in the OTU method (102 ± 21)
compared to richness in the ASV (15 ± 2) and usASV
(35 ± 15), while at the same time the diversity of the
OTU method was lower than the other two methods
(Fig. S1C, D). Similar to the bacterial dataset, coverage
for the simulated fungal dataset and culture-based mock
was similar among all three methods, although with a
slightly enhanced performance for the ASV method at
the level of order and family in the simulated dataset
(Fig. S4 and Table S1). The number of false positives
was lower in the ASV method (five genera) than those in
the OTU method (28 genera) and usASV (23 genera),
which probably resulted in an overestimation of richness
(Table S1).
In the soil-related dataset, the unfiltered ASV method

provided half as many ASVs/OTUs as the OTU method
did (2253 vs. 4438) (Table S2). After technical filtering, a
decrease of approximately 70% for fungal ASVs was ob-
served due to an elevated presence of unique sample se-
quences, which was similar to the bacterial ASVs.
Results for the fungal alpha diversity were comparable
with those in the bacterial communities for the three
methods, with a significantly lower Shannon diversity
and richness for the ASV method than for the OTU and
usASV methods (P < 0.05) (Fig. S5 A, B). A plateau in
fungal community richness and a richness-sequencing
depth correlation were observed for the ASV method. A
similar plateau was observed in the OTU method, with
only a slight increase observed as sequencing depth in-
creased. This disparity with the bacterial dataset is prob-
ably related to the lower richness of fungi in soil than
bacteria. The usASV results were comparable to those of
the ASV method.
When focusing on the structural composition, we

found 75 fungal families that were all identified using
the three methods after applying a more stringent filter-
ing. In the OTU method, 50 additional fungal families
were identified, most of which were absent in the ASV
method due to the abundance filtering. Fourteen families
were missing in the ASV dataset, but they were low-
abundant in the OTU dataset (RA < 0.1%).
Analysis of the effect of tillage on the fungal family

level (Fig. S5 C) revealed that in the ASV method, con-
ventional tillage significantly changed the abundance of
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three families, with two families showing increased RA
(FDR < 0.05). The same three families were also signifi-
cantly affected in the OTU and usASV methods. Three
additional significant families were found in the OTU
method and seven extra families were found in the
usASV method (FDR < 0.05).
In conclusion, the ASV method outperformed the

OTU method when estimating the correct number of
fungal species when the sample richness was low or
when sufficient sequencing depth was present, possibly
due to an increased number of false positives in the
OTU method. In general, however, coverage was com-
parable. Differences between the two methods were
found for low-abundant fungal families in the biological
dataset, although this was less pronounced in compari-
son to the bacterial community.

Discussion
Metabarcoding has become an essential tool to explore
microbial communities in different environments. In-
creased analysis possibilities have resulted in the chal-
lenge of selecting the best method and correctly
interpreting the results. We have shown that the choice
between a clustering-based method (OTUs; USEARCH-
UPARSE) and an error model-based method (ASVs;
DADA2) affects the detection of microbial diversity,
richness, composition, and differential abundances be-
tween treatments or sample types [12, 14], which inevit-
ably leads to different biological conclusions. In this
study we did not strive to compare all existing work-
flows, but rather to explore differences that occur when
using either OTUs or ASVs on alpha and beta diversity
parameters, and possible differences in biological conclu-
sions made based on different outcomes in OTU and
ASV analysis. For a methodological comparison of
different OTU and ASV workflows we suggest reading
[18, 20, 26].
To benchmark previous research, we first analyzed

culture-based mock and simulated datasets. Here we
studied the differences occurring due to the algorithm,
rather than analyzing how the different methods cope
with sequencing and PCR errors, therefore no errors
were induced in the simulated dataset. Best results for
both OTU and ASV methods were obtained for samples
with high sequencing depth. Additionally, richness was
best estimated by the ASV method. Based on the bacter-
ial culture-based mock and simulated datasets, we can
state that at family level, taxonomy was well determined
(> 75% was correctly assigned), with low number of false
positive and negative occurrences, in contrast to genus
level (50% correct assignment). The underlying reasons
of missing taxonomy is most likely different for each
method. For the ASV method, the reason might be the
high amount of unassigned (39.7% ± 6.1%) ASVs,

whereas for the OTU method, it might be clustering into
the most abundant sequence, which is not likely to be a
biological sequence. Additionally, even though the data-
bases are extensive, they most probably do not contain
all sequences present in the culture-based mock.
The low number of correct taxonomy assignments

could also be due to the technology applied, where only
a short fragment of the 16S rRNA gene is amplified. To
increase the taxonomic resolution, other marker genes
such as GyraseB could be sequenced in parallel [27].
While the existing databases for marker genes other
than the 16S rRNA gene are rather small, the distinctive
capacity is better for several bacterial families. Other
methods such as shotgun metagenomics studies or
nanopore sequencing analysis can also be used to obtain
results at lower taxonomic levels [28, 29].
For the comparison of metagenomics workflows, pre-

vious research focused strongly on strain detection
within mock datasets, differences in alpha and beta di-
versities, and computing time [19, 20, 26, 30]. For re-
search purposes, microbiomes are often analyzed at the
biological level, because researchers are interested in
examining either differential depletions and enrichments
upon treatment or particular families with a certain RA.
Therefore, we looked closely at whether the chosen
methods also affects the bacterial and fungal community
compositions, the differential abundances between treat-
ments, and sample types for soil- and plant-related data-
sets, as these all may result in different biological
conclusions.
In contrast to the community composition of the

culture-based mock that was comparable when analyzed
with ASV, OTU, or usASV methods, we detected unique
families for each method in the soil- and plant-related
datasets. Strikingly, the number of detected families
(mostly low-abundant) with the OTU and usASV
method was higher than that of the ASV method, hint-
ing at a strong impact of the merging and filtering,
which were similar for the OTU and usASV methods.
Thus, when interested in low-abundant species, we
recommend optimization of the merging and filtering
settings of the chosen method.
To understand the differences in richness and diversity

between OTU and ASV methods, we studied a simulated
dataset with either low (100 or 500 independent species)
or high (1000 or 2500 independent species) richness. For
both ASV- and OTU calling, the estimation of richness
and diversity was sufficient for low-diversity samples.
This might be due to the inherent history of both
methods, both of which have been optimized based pri-
marily on low diverse datasets such as human-related
microbiomes [11, 14]. The human gut is expected to be
the most diverse human-related microbiome with an es-
timated richness of about 150–200 species [31]. In case
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of higher diversity in the sample, community richness
and diversity are underestimated by the ASV and OTU
methods, but the ASV method outperforms the OTU
method when sequencing depth is high enough. Notably,
a richness plateau appears for the simulated dataset in
both the ASV and OTU methods. As no PCR or sequen-
cing errors are introduced into this simulated dataset,
the flattening of the curve can be due to better error
capturing by the ASV method than the OTU clustering
and therefore might also explain the lower diversity for
the ASV method. Similar to the culture-based and simu-
lated datasets, in both soil- and plant-related bacterial
communities the diversity and number of detected ASVs
were considerably lower than those of OTUs [20, 32].
The ASV richness seems to correlate with the sequen-
cing depth, as the richness curve from the ASV method
reaches a plateau, whereas this correlation was not de-
tected in the OTU method. These observations can par-
tially be explained by the read partitioning of the ASV
error model, because the trends are the same for the
usASV method, in which filtering and merging are done
with USEARCH in combination with the error-calling
model of DADA2. The detected reduced ASV diversity
in the environmental datasets can thus partially be ex-
plained by a sequencing depth shortage that can be
managed by sequencing fewer samples per run, although
at an increased sequencing cost.
We have thus confirmed that richness is directly

linked with the chosen method and strongly relates to
sequencing depth. Estimation of the absolute number of
species is still difficult based on metabarcoding data
alone. Other approaches could be more informative,
such as in-depth isolation techniques, cell counting with
flow cytometry or the use of spike-in plasmids [33–35].
For metabarcoding data, we recommend studying rela-
tive changes in richness between treatments and samples
rather than focus on absolute richness values. In our
datasets, differences in diversities between rhizosphere
and endosphere in the plant dataset could, for example,
be detected in all methods. In addition, diversity mea-
surements, such as the Shannon index, seem to be more
consistent across the different methods.
Major differences were found between used methods

in the significantly differential families upon treatment
in the soil dataset and compartment in the plant dataset,
most distinctly for low-abundant bacterial families. Even
after filtering out families lower than 0.1 and 0.5% RA,
the number of differential abundant families remained
lower, although less pronounced, for the ASV than for
the OTU method. Therefore, for the OTU-based ana-
lysis, stringent filtering during data analysis is advised
for generating accurate results; the method is less effect-
ive in discriminating between biological variation and
technical errors, and low-abundant families give

uncertain results. This might cause the potential removal
of valuable rare species, thereby reducing the sensitivity.
Therefore, filtering should be considered independently
for each research project. Some high abundant families
also behaved differently between methods. For example,
in the plant dataset, the Xanthomonadaceae and Sphin-
gomonadaceae are significantly depleted in the endo-
sphere when analyzed with the ASV or the usASV
methods, but these high abundant families (> 4% in the
rhizosphere and > 1.5% in the endosphere) are not
detected as significant in the OTU methods.
Although bacterial richness and diversity are the main

focus of microbiome analyses, fungi are also important
ecological and functional players in soil- and plant re-
lated environments [36]. Fungal richness and diversity
was studied here using the same pattern as for the three
bacterial datasets (i.e., culture-based, mock and bio-
logical) used in this study. The number of ASVs show a
correlation with diversity and, when the community is
diverse enough, the richness is better estimated in the
ASV method than in the OTU method. In contrast, the
OTU method overestimated the richness in the fungal
culture-based mock due to a higher number of false pos-
itives that were not observed in the bacterial culture-
based mock. These observations can be linked to (i) in-
sufficient management of the PCR and sequencing er-
rors in the OTU method and (ii) the heterogeneous
sequence lengths of the internal transcribed spacer (ITS)
region for which the OTU clustering is not optimized.
The differential analyses of the fungal soil dataset mainly
revealed differences for the low-abundant families, al-
though the treatment effect is less pronounced. Because
the results of the OTU method and those of the usASV
method are similar, the differences can be attributed to
the filtering and merging of USEARCH. These findings
suggest that the ASV method is better adapted to deal
with fungal sequences as stated previously [19, 36].
In conclusion, caution is advised when analyzing meta-

barcoding data, because the results are affected by all of
the steps of the workflow, starting from the sampling
process through to the bioinformatic analysis. First, we
have shown that the use of OTUs or ASVs will affect the
biological conclusions drawn by the researcher. We have
demonstrated this for the analysis and interpretation of
low abundant taxa as different families will be classified
depending on the choice of OTU or ASV method. This
is also true for the alpha diversity measurements and the
differential enriched or depleted families in environmen-
tal datasets. Based on our findings, we present four rec-
ommendations for metabarcoding analysis: (i) analyze
and compare datasets at family level for best balance in
data coverage and taxonomical relevance, (ii) use ASV
levels when a high sequencing depth is guaranteed
(more robust and trustworthy for bacterial sequences),
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(iii) study relative changes in richness values rather than
absolute values, and (iv) use the ASV methods for fungal
datasets (higher sensitivity, fewer false positives).

Conclusions
The recent shift away from clustering metabarcoding
datasets by OTUs toward ASVs affects the biological in-
terpretation of data. We have made an in-depth com-
parison of both methods to distinguish the community
composition and complexity. Both methods are generally
established for low-complexity samples (e.g. human
microbiome data) and bacterial communities. As most
environmental samples are microbially very rich, we
tested both bacterial and fungal communities in plant-
and soil-related samples. Differences in differential abun-
dances, richness and diversity were detected when apply-
ing the OTU vs. ASV method. These differences may
result in different biological conclusions. The ASV
method used outperformed the OTU method, but OTU
is adequate to capture the community complexity. Add-
itionally, we showed that analysis for each of the adopted
methods is best performed at family level. Our results
clearly indicate that caution is required when interpret-
ing and analyzing metabarcoding data.

Methods
Datasets for simulated bacterial and fungal communities
Bacterial and fungal metabarcoding datasets were simu-
lated using Grinder v0.5.4 [37]. For the bacterial and
fungal datasets, the SILVA 16S rRNA gene (v132) data-
base and UNITE (v7) were used as reference databases,
respectively [22, 25]. In total, 100,000 sequences per
dataset were randomly selected from the reference data-
base based on a power-law abundance model to approxi-
mate true abundance models for metabarcoding libraries
(a few high-abundant sequences and a high number of
low abundance sequences), and the per-base quality was
fixed on a Phred score of 30. From these sequences, the
V3-V4 variable region of the 16S rRNA and ITS2 gene
for the bacteria and fungi, respectively, were selected by
an in silico PCR, with the primers of the field soil data
set as input. In total, 20 datasets were created for bac-
teria and 20 for fungi. The dataset richness was equal to
100, 500, 1000, and 2500 in order to approximate low
diversity communities (endosphere) and high diversity
communities (soil). The five datasets per richness depth
were rarefied to either 7500, 10,000, 20,000 or 50,000 or
used as such without rarefaction to introduce differences
into the sampling depth.

Datasets for culture-based bacterial and fungal mock
communities
To create the culture-based mock bacterial community
with 254 bacterial isolates (Table S6 A), maize roots

were sterilized and crushed [24]. Diluted suspensions
were plated and incubated. Growing colonies were se-
lected, streaked until pure cultures, and identified by
Sanger sequencing based on the 16S rRNA gene with
primers 27F and 1492R (Table S6 B) [38]. The bacterial
strains were grown in liquid culture overnight with the
same optical density (OD) and pooled (nonequimolar)
(Table S6 A). Because closely related taxa are difficult to
distinguish based on metabarcoding data, we deliberately
included closely related strains into the bacterial mock
community. DNA was extracted from the pooled bacter-
ial culture and used six times as input for the metabar-
coding library preparation.
The mock fungal community consisted of 13 fungal

isolates, partly from ILVO’s fungal collection, and in-
cluded members of the Ascomycota and Basidiomycota.
DNA was pooled in equimolar concentrations in six-fold
to obtain technical replicates (Table S6 C).
Six technical replicates per sample were used for meta-

barcoding of the bacterial and fungal mock communities.
Illumina metabarcoding was done on the hypervariable
V3-V4 region of the 16S rRNA gene and the ITS2 gene
for the bacterial and fungal community, respectively, as
described previously [39]. Libraries were sequenced using
Illumina MiSeq v3 technology (2 × 300 bp, paired-end) by
Admera Health (San Francisco, CA, USA) with 30% PhiX
DNA as spike-in. The raw data were demultiplexed by the
sequencing provider and primers were trimmed off with
Trimmomatic (v0.32) [40].

Biological datasets
Biological datasets were based on samples from a field
trial of Flanders Research Institute for Agriculture, Fish-
eries and Food (ILVO) in Merelbeke, Belgium, according
to applicable governmental rules and legislation [23]. In
the field trial, soil was exposed to three treatments: (i)
farm compost application (0 vs. 2000 kg C ha− 1 y− 1), (ii)
tillage practices (conventional vs. non-inversion tillage),
and (iii) slurry application (cattle vs. pig). The experi-
mental set-up has been described previously [23]. Here,
we focused only on the effect of the tillage practices, be-
cause a preliminary analysis showed that this treatment
had the highest impact on the soil microbiome [41].
Topsoil (0–10 cm) was sampled in 2014 using an X sam-
pling pattern resulting in eight technical sub-replicates
that are mixed together to create one biological repli-
cate. In total four biological replicates are present for
each treatment. Samples were stored at − 20 °C and
freeze-dried before DNA extraction from 250mg soil
using the DNeasy Powersoil Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.
Illumina metabarcoding was done on the hypervariable
V3-V4 (341 forward and 785 reverse primers) region of
the 16S rRNA gene and the variable spacer of ITS2 gene
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(forward and reverse position depending on the fungal
organism) for the bacterial and fungal communities, re-
spectively, according to the described protocol [39]
(Table S5). Libraries were sequenced by means of the
Illumina MiSeq v3 technology (2 × 300 bp, paired-end)
by the Oklahoma Medical Research Foundation (Okla-
homa City, OK, USA) with 30% PhiX DNA as spike-in.
The sequencing provider demultiplexed the raw data.
Primers were trimmed off using Trimmomatic (v0.32)
before further analysis [40].
For the plant-related experiment, seeds from one hybrid

maize variety (LG30.217) were purchased (Limagrain,
Saint Beauzire, France). All plants used in the experiments
were grown in pots filled with Belgian field soil. The rhizo-
sphere and endosphere of maize roots grown in field soil
were sampled as described [24]. In brief, surface-sterilized
maize seeds were sown in pots filled with Belgian field soil
(sandy-loam soil; United State Department of Agriculture
classification) (50°58′41″ N, 3°46′47.28″ E; Merelbeke,
Belgium). Rhizosphere and endosphere were sampled after
3 weeks of growth under controlled growth chamber con-
ditions (16 h/8 h light/dark regime, 21 °C). In total, 10 rep-
licates were taken. Roots were shaken vigorously and
washed briefly with phosphate-buffered saline (PBS) solu-
tion, the washing solutions were centrifuged (5min at 10,
000 g), and the remaining pellet was flash-frozen and des-
ignated as the rhizosphere samples. The washed roots
were flash-frozen, designated as the endosphere samples,
and ground before DNA extraction. DNA was isolated
from all collected samples with the DNeasy PowerSoil
DNA kit (Qiagen) and the V4 region (515 forward and
806 reverse primers) of the 16S rRNA gene was amplified
(Table S5). An Illumina MiSeq platform (v3) was used ac-
cording to the Illumina protocols for a 2 × 300-bp cycle
run (VIB, Nucleomics Core, Leuven, Belgium). Demulti-
plexing was done by the sequencing provider and primers
were removed using Trimmomatic (v0.32) [40].

Downstream data analysis for the OTU workflow
Primer-free forward and reverse reads were merged with
USEARCH (v2.6.0) [12]. For the field soil and mock
communities, a quality threshold was set at 30 and a re-
quired minimal overlap size at 120 nucleotides for the
V3-V4 (341 forward and 785 reverse primers) and ITS2
gene regions (forward and reverse position depending
on the fungal organism) (Table S5). Minimal and max-
imal possible lengths of the assembled sequences was
fixed at 400 and 450 nucleotides for the bacterial se-
quences and 200 to 450 nucleotides for the fungal se-
quences, respectively. For the pot experiment, the V4
region was amplified (515 forward and 806 reverse)
(Table S5). Merging was set at a minimum overlap of 30
nucleotides. Subsequent analysis steps were the same for
all experiments. All merged sequences were quality

filtered with a maximum expected error of three with
fastx_filter and sequences with uncalled bases were dis-
carded with USEARCH (v2.6.0) [12]. The ITS2 region
was extracted using ITSx (v1.1.1) [42]. The sequences of
all samples were dereplicated and sorted by size. Reads
were clustered into OTUs with UPARSE, with an iden-
tity level of 97 and 98.5% for bacterial and fungal se-
quences, respectively [21, 43]. Chimeras were removed
with the uchime_ref command and the Gold ribosomal
database project as a reference [44]. Sequences were
mapped back to the representative OTUs with the
usearch_global algorithm at 97% (bacterial) or 98.5%
(fungal) identity and converted into an OTU table [45].
Taxonomy was assigned by means of assignTaxonomy of
the DADA2 package using a naive Bayesian classifier
method.

Downstream data analysis for the ASV workflow
The DADA2 inference algorithm was used on primer-
free reads to correct sequencing errors and create ASVs
for the bacterial and fungal communities (v1.12) in R
(v3.5.2) [14]. The reads were quality filtered by means of
the filterAndTrim function that truncated the forward
and reverse reads at 263 bp and 225 bp for the bacterial
soil dataset and at 240 bp and 200 bp for the plant data-
set, respectively, whereas a minimum length of 50 bp
was used for the fungal soil dataset. For both bacterial
and fungal datasets, reads were removed with more than
three errors in the forward and five errors in the reverse
reads. Reads were merged after inference of sequence
variation with learnerrors and dada functions. Chimeric
sequences were eliminated and taxonomy assigned with
assignTaxonomy based on the SILVA database (v132)
and UNITE (v7) databases for bacterial and fungal
taxonomies, respectively [22, 46].

Downstream data analysis for the usASV workflow
To determine the effect of filtering and merging on dif-
ferences between workflows, we created the usASV
workflow and tested it on the field soil dataset. Reads
were merged and filtered as described for the OTU
workflow. These filtered reads were then used to call
ASVs and assign taxonomy by the DADA2 inference
algorithm.

Statistical analysis of the simulated and culture-based
mock communities
For both the bacterial and fungal mock community data-
sets, two count tables were generated from the ASV and
OTU workflows. For both count tables, only the ASVs/
OTUs with a count of at least two in 1M in at least
three samples were kept for analysis. For each sample
and each taxonomical level (kingdom, phylum, class,
order, family, and genus), the number of true positives
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(TPs; taxa present in the mock community and correctly
identified), false positives (FPs; taxa not originally
present in the mock community, but identified in the
analysis), and false negatives (FNs; taxa originally present
in the mock community, but not identified in the ana-
lysis) were calculated. Based on these scores, we esti-
mated the coverage for each taxonomical level by the
following formula:

Coverage ¼ True Positives
Total expected result numbers

In addition, the microbial richness, defined as the
number of ASVs/OTUs recovered for each sample, was
calculated at minimal sequencing depth. For all samples,
convergence was reached based on the rarefaction plots
(Fig. S1).
Metabarcoding communities and thus also mock com-

munities suffer from biases introduced by sample hand-
ling and preservation, technical DNA extraction issues
[47], and sequencing technology artefacts [48]. There-
fore, to evaluate the ASV and OTU coverage for which
no biases occurred, we generated in silico bacterial mock
communities with a method similar to that described
[49]. In brief, a binary classification test of TRUE or
FALSE assignments per read was done that compared
the taxonomy identification (taxid) of the expected
lineage against the taxid of the taxonomic annotation at
every taxonomic level from kingdom to genus. TP anno-
tations were the TRUE ratings due to a correct
taxonomic identification. When there was a misclassi-
fication, a FP was created, whereas a taxa that was in-
correctly not classified (NA) was a FN. Coverage
plots were obtained by taking into account each taxo-
nomic level by means of the above formula. These
coverage plots were made per richness values and for
the two methods separately.
Besides these coverage plots, the richness was also cal-

culated similarly as for the mock communities. These
values were visualized by rarefaction plots. All analyses
were done in R (v3.5.2) by means of the Phyloseq
package (v3.10) and ggplot2 (v3.2.1) for graphical
visualization [50].

Statistical analysis of the biological datasets
For the soil and plant-related dataset, three count tables
were generated: the ASV, OTU, and usASV workflows.
A technical filtering of two counts in at least three inde-
pendent samples was done on the bacterial and fungal
datasets to remove spurious ASVs or OTUs and also
mitochondrial and chloroplast sequences were removed
in the bacterial datasets. Shannon-Wiener diversity indi-
ces were calculated with the microbiome package
(v1.9.1) [51]. Because diversity and richness were not

distributed normally, the means of the alpha diversity
measurements were analyzed using the Kruskal-Wallis
test followed with a pairwise Wilcoxon test and p-values
were adjusted by the Holm-Bonferroni method. As no
significant effect of treatments was detected for richness
or Shannon diversity for the field soil, only pairwise
comparison of the methods was done (P > 0.05). The
biological analyses were done using Phyloseq (v3.10) and
edgeR (v3.26.1) after abundance filtering of at least two
counts per sample in at least four samples [50, 52]. Dif-
ferential abundance in the soil microbiome was assessed
for the effect of non-inversion tillage vs. conventional
tillage on the family level by constructing the following
model.

E RAð Þ � − 1þ Treatment þ BlockField

The hypotheses of interest were tested by building a
specific contrast, comparing the estimated mean dif-
ferences in between tillage treatments. The data were
normalized with the trimmed mean of M values
(TMM) that corrects the effective library size of the
count tables. For the soil dataset, a generalized linear
model with negative binomial distribution (nbGLM)
was applied to the counts for each ASV/OTU with
tillage practices as main effect and a block effect to
account for subplots on the field. For the plant data-
set, the same model was used with the compartments
as main effect and blocking on plants. The signifi-
cance of the ASV or OTU changes was inferred with
a quasi-likelihood F-test with a Benjamin-Hochberg
False Discovery Rate [FDR] of 5% to adjust for mul-
tiple corrections. The plant dataset was analyzed simi-
larly as the soil dataset. For the differential
abundance analysis, the following model was used:

E RAð Þ � Compartmentþ BlockPlant

The contrast of interest compared the mean differ-
ences of the rhizosphere and endosphere.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07126-4.

Additional file 1: Figure S1. Shannon diversity and richness versus
sequencing depth of ASV, OTU and usASV method of a bacterial (A and
B) and fungal (C and D) culture-based mock community. A. Shannon di-
versity of the bacterial culture-based mock community for each method.
Technical replicates are displayed as dots (n = 6). B. For each method,
richness of the bacterial culture-based mock community with increasing
sequencing depth (until 80,000 sequences). C. Shannon diversity of the
fungal culture-based mock community for each method. Technical repli-
cates are displayed as dots (n = 6). D. For each method, richness of the
fungal culture-based mock community with increasing sequencing depth
(until 100,000 sequences). Figure S2. Differential abundances for non-
inverted tillage versus conventional tillage in the soil dataset for bacterial
families in all methods. All families found to be significant using the ASV,
OTU, and usASV methods are shown with their respective relative
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abundance per treatment (n = 16). The presence of dots on the right indi-
cates families with a significant effect of the applied treatment (FDR 5%)
and the dot size corresponds to the logFC. The light and dark blue colors
indicate decrease and increase in relative abundance, respectively. The
gray boxes are families found to be significant in all three methods. Fig-
ure S3. Differential abundant bacterial families between rhizosphere and
endosphere. All significant families found using the ASV, OTU, and usASV
methods are shown with their respective relative abundance per com-
partment (n = 10). The presence of dots on the right of the box plots of
the families indicate a significant effect of the applied treatment (FDR
5%) and the dot size represents the logFC. The light and dark blue colors
indicates decrease and increase in the relative abundance, respectively.
The gray boxes are families found to be significant in all three methods.
Figure S4. Representation of the species richness, diversity, and coverage
for the simulated fungal dataset analyzed either using the ASV method
(red) or OTU method (blue). Datasets are simulated from the UNITE refer-
ence database (version 7) with an original community richness from 100
(light colored) and 2500 (dark colored). Top panel, Shannon diversity
index per original sample richness; middle panel; community richness
with increasing sequencing depth; and bottom panel, coverage of each
method per taxonomic level. Figure S5. Shannon diversity and richness
versus sequencing depth of ASV, OTU and usASV method in the fungal
soil dataset (A and B) and differential abundances for non-inverted tillage
versus plowing in the soil dataset for fungal families in all methods (C).
A. Shannon diversity per treatment (treatments 1 and 2) for each
method. Samples are displayed as dots (n = 16). B. Richness of each
method with increasing sequencing depth. Sixteen replicates of each
treatment are presented. C. All significant families found using the ASV,
OTU, and usASV methods with their respective relative abundance per
treatment (n = 16). The dots on the right of the boxplots indicate signifi-
cant effects of the applied treatment (FDR 5%) and the dot size corre-
sponds to the logFC. The light and dark blue colors indicate decrease
and increase in the relative abundance, respectively. The gray boxes are
families found to be significant in all three methods. Table S1. Differ-
ences in terms of coverage, number of false positives (FPs) and false neg-
atives (FNs) between the ASV, OTU, and usASV methods in a bacterial
and a fungal culture-based mock community. The bacterial mock com-
munity was assembled from plant-related species. In total, 254 bacterial
species were present in the mock community, which could be classified
to 4 phyla, 8 classes, 14 orders, 22 families, and 31 different genera based
on the SILVA taxonomy (v132). The fungal mock community was assem-
bled from plant-pathogenic species. In total, 14 fungal species were
present in the mock community, which could be classified to 2 phyla, 5
classes, 9 orders, 12 families, and 12 genera based on the UNITE reference
database. Six technical replicates were analyzed, each resulting in the
same values for coverage, FPs, and FNs. Table S2. Number of ASVs/OTUs
after each filtering step for all three methods per dataset. Applied filtering
steps removed the chloroplast and mitochondrion sequences. Prevalence
filtering was applied before the alpha diversity and abundance filtering
before the differential abundance (DA) analysis. Table S3. Number of
families and differentially abundant families after various filtering strat-
egies for the ASV, OTU, and usASV methods for the soil and plant-related
datasets. The families are counted after filtering out the low-abundant
families (at least two CPM), families with a relative abundance higher than
0.1%, and those with one higher than 0.5%. The number of significantly
differential families are also counted for the three filtering strategies
(FDR < 0.05). Table S4. Relative abundances of five families in the OTU,
ASV, and usASV methods. The relative abundances (% ± SE) of five fam-
ilies are presented. Asterisks indicate significant differences between
rhizo- and endosphere (*, FDR < 0.5; **, FDR < 0.01). Table S5. Informa-
tion of primer sets. Table S6. Dataset containing the bacterial and fungal
collection used for the mock communities. A. List of all the bacterial
strains with their assigned taxonomy using SILVA. B. 16S rRNA sequences
of the bacterial strains of the mock community. C. Composition of the
fungal mock community using the different DNA extraction methods.

Abbreviations
ASV: Amplicon Sequence Variant; DNA: Deoxyribonucleic Acid; FDR: False
Discovery Rate; FN: False negative; FP: False positive; GLM: General linear
model; nbGLM: negative binomial GLM; OTU: Operational Taxonomic Unit;

RA: Relative abundance; RNA: Ribonucleic Acid; SE: Standard error;
TMM: Trimmed mean of M values; TP: True positive

Acknowledgments
We thank Martine De Cock (VIB-UGent) for help preparing the manuscript
and Miriam Levenson (ILVO) for English-language editing.

Authors’ contributions
B.V. was involved in the design and supervision of the soil experiment, S.
Beirinckx. and S.G. designed the maize experiment. L. J, S. Beirinckx. and
C.D.T performed and analyzed the data and wrote the manuscript. A.H.
helped with the bio-informatics of data analysis, L.C. with the statistical ana-
lysis and S. Baeyen helped with the analysis of mock and simulated datasets.
All authors contributed to the writing of the manuscript and approved
submission.

Funding
This research was supported by the Research Foundation–Flanders
(postdoctoral fellowship no. 12S9418N to C.D.T.), Strategic Basic Research
(predoctoral fellowship no. 151553 to S.B.) and SoilCom (Interreg project
supported by the North Sea Region programma of the European Regional
Development Fund of the European Union to L.J.). Both Province of Antwerp
and East-Flanders co-funded ILVO for this Interreg project. The funding agen-
cies had no role in the design of the study, collection, analysis, or interpret-
ation of data, or in writing the manuscript.

Availability of data and materials
The raw demultiplexed sequence data are available in the NCBI Sequence
Read Archive under accession numbers PRJNA602824 (field soil dataset),
PRJNA524079 (plant-related experiment) and PRJNA601852 (bacterial and
fungal mock) and PRJNA601863 (simulated bacterial and fungal mock).
Scripts used to run all data analysis can be found at https://gitlab.com/lljoos/
asv_vs_otu.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant
Sciences Unit, Burgemeester Van Gansberghelaan 92, 9820 Merelbeke,
Belgium. 2Department of Applied Mathematics, Computer Science and
Statistics, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium. 3Department
of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark
71, 9052 Ghent, Belgium. 4Center for Plant Systems Biology, VIB, Ghent,
Technologiepark 71, 9052 Ghent, Belgium.

Received: 20 March 2020 Accepted: 8 October 2020

References
1. Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte J-L,

De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffery S, Johnson
NC, Jones A, Kandeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L,
Montanarella L, Moreira FMS, Ramirez KS, Scheu S, Singh BK, Six J, van der
Putten WH, Wall DH. Global Soil Biodiversity Atlas. Luxembourg: European
Commission Publication Office of the European Union; 2016. https://doi.org/
10.2788/799182.

2. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A,
Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. A global atlas of
the dominant bacteria found in soil. Science. 2018;359:320–5.

3. Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Brunel D, Frostegård
Å, Heulin T, Jansson JK, Jurkevitch E, Kruus KL, Kowalchuk GA, Lagares A,
Lappin-Scott HM, Lemanceau P, Le Paslier D, Mandic-Mulec I, Murrell JC,
Myrold DD, Nalin R, Nannipieri P, Neufeld JD, O'Gara F, Parnell JJ, Pühler A,
Pylro V, Ramos JL, LFW R, Schloter M, Schleper C, Sczyrba A, Sessitsch A,

Joos et al. BMC Genomics          (2020) 21:733 Page 15 of 17

https://gitlab.com/lljoos/asv_vs_otu
https://gitlab.com/lljoos/asv_vs_otu
https://doi.org/10.2788/799182
https://doi.org/10.2788/799182


Sjöling S, Sørensen J, Sørensen SJ, Tebbe CC, Topp E, Tsiamis G, van Elsas
JD, van Keulen G, Widmer F, Wagner M, Zhang T, Zhang X, Zhao L, Zhu Y-G,
Vogel TM, Simonet P. Back to the future of soil metagenomics. Front
Microbiol. 2016;7:73.

4. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ,
Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova
E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Xu ZZ, Jiang L,
Haroon MF, Kanbar J, Zhu Q, Song SJ, Kosciolek T, Bokulich NA, Lefler J,
Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D,
McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard
KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, Earth Microbiome Project
Consortium. A communal catalogue reveals Earth's multiscale microbial
diversity. Nature. 2017;551:457–63.

5. Degrune F, Theodorakopoulos N, Colinet G, Hiel M-P, Bodson B, Taminiau B,
Daube G, Vandenbol M, Hartmann M. Temporal dynamics of soil microbial
communities below the seedbed under two contrasting tillage regimes.
Front Microbiol. 2017;8:1127.

6. Peiffer JA, Spor A, Koren O, Jin Z, Green Tringe S, Dangl JL, Buckler ES, Ley
RE. Diversity and heritability of the maize rhizosphere microbiome under
field conditions. Proc Natl Acad Sci U S A. 2013;110:6548–53.

7. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should
replace operational taxonomic units in marker-gene data analysis. ISME J.
2017;11:2639–43.

8. Fricker AM, Podlesny D, Fricke WF. What is new and relevant for sequencing-
based microbiome research? A mini-review. J Adv Res. 2019;19:105–12.

9. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E.
Defining operational taxonomic units using DNA barcode data. Philos Trans
R Soc B. 2005;360:1935–43.

10. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J,
Gonzalez A, Kosciolek T, McCall L-I, McDonald D, Melnik AV, Morton JT,
Navas J, Quinn RA, Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu
ZZ, Zaneveld JR, Zhu Q, Caporaso JG, Dorrestein PC. Best practices for
analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22.

11. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST,
Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,
Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J,
Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-
throughput community sequencing data. Nat Methods. 2010;7:335–6.

12. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26:2460–1.

13. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger
GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-
independent, community-supported software for describing and comparing
microbial communities. Appl Environ Microbiol. 2009;75:7537–41.

14. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
DADA2: high-resolution sample inference from Illumina amplicon data. Nat
Methods. 2016;13:581–3.

15. Caruso V, Song X, Asquith M, Karstens L. Performance of microbiome
sequence inference methods in environments with varying biomass.
mSystems. 2019;4:e00163–18.

16. Forster D, Lentendu G, Filker S, Dubois E, Wilding TA, Stoeck T. Improving
eDNA-based protist diversity assessments using networks of amplicon
sequence variants. Environ Microbiol. 2019;21:4109–24.

17. Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, Hingamp
P, Alves R, Costea PI, Coelho LP, Schmidt TSB, Almeida A, Mitchell AL, Finn RD,
Huerta-Cepas J, Bork P, Zeller G, Sunagawa S. Microbial abundance, activity and
population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014.

18. Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E.
Comparing bioinformatic pipelines for microbial 16S rRNA amplicon
sequencing. PLoS One. 2020;15:e0227434.

19. Pauvert C, Buée M, Laval V, Edel-Hermann V, Fauchery L, Gautier A, Lesur I,
Vallance J, Vacher C. Bioinformatics matters: the accuracy of plant and soil
fungal community data is highly dependent on the metabarcoding
pipeline. Fungal Ecol. 2019;41:23–33.

20. Nearing JT, Douglas GM, Comeau AM, Langille MGI. Denoising the
Denoisers: an independent evaluation of microbiome sequence error-
correction approaches. PeerJ. 2018;6:e5364.

21. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon
reads. Nat Methods. 2013;10:996–8.

22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
Glöckner FO. The SILVA ribosomal RNA gene database project: improved
data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

23. D'Hose T, Ruysschaert G, Viaene N, Debode J, Vanden Nest T, Van
Vaerenbergh J, Cornelis W, Willekens K, Vandecasteele B. Farm compost
amendment and non-inversion tillage improve soil quality without
increasing the risk for N and P leaching. Agric Ecosyst Environ. 2016;225:
126–39.

24. Beirinckx S, Viaene T, Haegeman A, Debode J, Amery F, Vandenabeele S,
Nelissen H, Inzé D, Tito R, Raes J, De Tender C, Goormachtig S. Tapping into
the maize root microbiome to identify bacteria that promote growth under
chilling conditions. Microbiome. 2020; in press.

25. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D,
May T, Ryberg M, Abarenkov K. High-level classification of the Fungi and a
tool for evolutionary ecological analyses. Fungal Divers. 2018;90:135–59.

26. Xue Z, Kable ME, Marco ML. Impact of DNA sequencing and analysis
methods on 16S rRNA gene bacterial community analysis of dairy products.
mSphere. 2018;3:e00410–8.

27. Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G,
Simoneau P, Jacques M-A. Emergence shapes the structure of the seed
microbiota. Appl Environ Microbiol. 2015;81:1257–66.

28. Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-
Buck D, Mendes LW, van Ijcken WFJ, Gomez-Exposito R, Elsayed SS,
Mohanraju P, Arifah A, van der Oost J, Paulson JN, Mendes R, van Wezel GP,
Medema MH, Raaijmakers JM. Pathogen-induced activation of disease-
suppressive functions in the endophytic root microbiome. Science. 2019;
366:606–12.

29. Feng Y, Zhang Y, Ying C, Wang D, Du C. Nanopore-based fourth-generation
DNA sequencing technology. Genom Proteomics Bioinform. 2015;13:4–16.

30. Edgar RC. Accuracy of microbial community diversity estimated by closed-
and open-reference OTUs. PeerJ. 2017;5:e3889.

31. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome.
Genome Med. 2016;8:51.

32. Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, Koci M, Ballou
A, Mendoza M, Ali R, Azcarate-Peril MA. A comparison of sequencing
platforms and bioinformatics pipelines for compositional analysis of the gut
microbiome. BMC Microbiol. 2017;17:194.

33. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski
N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC,
Vorholt JA, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and
root microbiota. Nature. 2015;528:364–9.

34. Vandeputte D, Kathagen G, D'Hoe K, Vieira-Silva S, Valles-Colomer M, Sabino
J, Wang J, Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J.
Quantitative microbiome profiling links gut community variation to
microbial load. Nature. 2017;551:507–11.

35. Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K,
Shirsekar G, Weigel D. Combining whole-genome shotgun sequencing and
rRNA gene amplicon analyses to improve detection of microbe-microbe
interaction networks in plant leaves. ISME J. 2020;14:2116–30.

36. Anslan S, Nilsson RH, Wurzbacher C, Baldrian P, Tedersoo L, Bahram M. Great
differences in performance and outcome of high-throughput sequencing data
analysis platforms for fungal metabarcoding. MycoKeys. 2018;39:29–40.

37. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW. Grinder: a versatile
amplicon and shotgun sequence simulator. Nucleic Acids Res. 2012;40:e94.

38. Niemann S, Pühler A, Tichy HV, Simon R, Selbitschka W. Evaluation of the
resolving power of three different DNA fingerprinting methods to
discriminate among isolates of a natural Rhizobium meliloti population. J
Appl Microbiol. 1997;2:477–84.

39. De Tender C, Haegeman A, Vandecasteele B, Clement L, Cremelie P,
Dawyndt P, Maes M, Debode J. Dynamics in the strawberry rhizosphere
microbiome in response to biochar and Botrytis cinerea leaf infection. Front
Microbiol. 2016;7:2062.

40. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

41. Debode J, De Tender C, Cremelie P, D'hose T, Ruysschaert G, Vandecasteele
B. Response of the soil microbiome to compost amendment, poster 064,
abstract international symposium on growing media, soilless cultivation,
and compost utilization in horticulture, Portland, OR (USA); 2017.

42. Bengtsson-Palme J, Veldre V, Ryberg M, Hartmann M, Branco S, Wang Z,
Godhe A, Bertrand Y, De Wit P, Sanchez M, Ebersberger I, Sanli K, de Souza
F, Kristiansson E, Abarenkov K, Eriksson KM, Nilsson RH. Improved software

Joos et al. BMC Genomics          (2020) 21:733 Page 16 of 17



detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of
fungi and other eukaryotes for use in environmental sequencing. Methods
Ecol Evol. 2013;4:914e919.

43. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J,
Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD. New
primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of
artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.

44. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves
sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–
200.

45. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D,
Wilke A, Huse S, Hufnagle J, Meyer F, Knight R, Caporaso JG. The biological
observation matrix (BIOM) format or: how I learned to stop worrying and
love the ome-ome. GigaScience. 2012;1:7.

46. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS,
Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U,
Abarenkov K. The UNITE database for molecular identification of fungi:
handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res.
2019;47:D259–64.

47. Brooks JP, Edwards DJ, Harwich MDJ, Rivera MC, Fettweis JM, Serrano MG,
Reris RA, Sheth NU, Huang B, Girerd P. Vaginal microbiome consortium,
Strauss JF 3rd, Jefferson KK, Buck GA. The truth about metagenomics:
quantifying and counteracting bias in 16S rRNA studies ecological and
evolutionary microbiology. BMC Microbiol. 2015;15:66.

48. Zepeda Mendoza ML, Sicheritz-Pontén T, Gilbert MTP. Environmental genes
and genomes: understanding the differences and challenges in the
approaches and software for their analyses. Brief Bioinform. 2015;16:745–58.

49. Escobar-Zepeda A, Godoy-Lózano EE, Raggi L, Segovia L, Merino E,
Gutiérrez-Rios RM, Juarez K, Licea-Navarro AF, Pardo-Lopez L, Sanchez-Flores
A. Analysis of sequencing strategies and tools for taxonomic annotation:
defining standards for progressive metagenomics. Sci Rep. 2018;8:12034.

50. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS One. 2013;8:E61217.

51. Lathi L, Shetty S. Tools for microbiome analysis in R. Version 1.9.1. 2017.
http://microbiome.github.com/microbiome.

52. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139–40.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Joos et al. BMC Genomics          (2020) 21:733 Page 17 of 17

http://microbiome.github.com/microbiome

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	ASV and OTU methods in simulated dataset and culture-based mock bacterial communities
	Differences between ASV and OTU methods in soil-related bacterial communities
	Differences between ASV and OTU methods in plant-related bacterial communities
	Differences between ASV and OTU methods in simulated fungal data, culture-based mock dataset and soil-related communities

	Discussion
	Conclusions
	Methods
	Datasets for simulated bacterial and fungal communities
	Datasets for culture-based bacterial and fungal mock communities
	Biological datasets
	Downstream data analysis for the OTU workflow
	Downstream data analysis for the ASV workflow
	Downstream data analysis for the usASV workflow
	Statistical analysis of the simulated and culture-based mock communities
	Statistical analysis of the biological datasets

	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

