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ABSTRACT
The past five years have seen a rapid development of plans and
test pilots aimed at introducing connected and autonomous vehi-
cles (CAVs) in public transport systems around the world. Using
a real-world scenario from the Leeds Metropolitan Area as a case
study, we demonstrate an effective way to combine macro-level
mobility simulations based on open data (i.e., geographic informa-
tion system information and transit timetables) with evolutionary
optimisation techniques to discover realistic optimised integration
routes for CAVs. The macro-level mobility simulations are used to
assess the quality (i.e., fitness) of a potential CAV route by quan-
tifying geographic accessibility improvements using an extended
version of Dijkstra’s algorithm on an abstract multi-modal trans-
port network.

CCS CONCEPTS
• Theory of computation→ Random search heuristics; • Ap-
plied computing → Transportation; • Computing method-
ologies → Discrete space search.

KEYWORDS
public transport, multi-modal transport, macro-level mobility sim-
ulations, reachability isochrones, evolutionary algorithms

ACM Reference Format:
Kate Han, Lee A. Christie, Alexandru-Ciprian Zăvoianu, and John McCall.
2021. Optimising the Introduction of Connected and Autonomous Vehi-
cles in a Public Transport System using Macro-Level Mobility Simulations
and Evolutionary Algorithms. In 2021 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO ’21 Companion), July 10–14, 2021, Lille,
France.ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.
3459476

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459476

1 INTRODUCTION AND BACKGROUND
Recent technological developments regarding connected and au-
tonomous vehicles (CAVs) offer transport authorities novel avenues
for the improvement of existing public transport systems (PT) sys-
tems [6][5]. For example, impactful gains can be obtained via a
niche CAV deployment on routes where PT provisioning can bring
important social benefits to local communities [2], even if expected
passenger volumes are too low to be economically viable.

More specifically, our real-life application scenario is to support
the West Yorkshire Combined Authority (WYCA) with automatic
optimised route discovery for a CAV-centred pilot project in the
district of Adel and Wharfedale — Leeds Metropolitan Area, UK.
This route must include Horseforth Train Station (a key PT multi-
modal hub). The quality of the route is assessed by the improve-
ment of average commuting time across the district when aiming
to reach Leeds (Central) Station by 10:00 AM on a workday. The
baseline to improve upon is 56 minutes and 19 seconds.

2 PROPOSED APPROACH
While employing classic spatial-temporalmodelling [4] to construct
an abstract transport network from Open Street Map (OSM) and
General Transit Feed Specification (GTFS) data, our bespoke
macro-levelmobility simulation procedure for multi-modal PT
systems achieves efficiency gains by:

• allowing for the independent modelling of the static (i.e.,
roads, pathways, existing PT routes) and transient (i.e., eval-
uated CAV route) parts of the PT network;

• opting for a reversible graph structure that facilitates the
computation of both inbound and outbound accessibility (i.e.,
𝑡𝑔 – the commuting times to/from a fixed destination) using
Dijkstra’s shortest path algorithm [3] on a set of equally-
spaced grid points 𝑔 ∈ 𝐺 .

We use a bitstring encoding to represent a given CAV route (i.e.,
a solution candidate). Each bitstring 𝑥 is of length 120 — the total
number of available PT stops in the district. After decoding the
list of selected PT stops (i.e., 𝐿 = {𝑖 : 𝑥𝑖 = 1}) from 𝑥 , the transient
GTFS information of the CAV service associated with route 𝑥 must
be generated prior to running the macro-level mobility simulation
and computing the fitness 𝑓 (𝑥) using Equation 1.
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Based on feedback from WYCA domain experts, the CAV service
is constructed under the following assumptions: bi-directional and
circular routes starting from Horsforth Station, daily availability
between 06:00 AM and 07:00 PM, minimal service frequency of
one bus every 10 minutes across all stops, PT stop waiting time of
30 seconds, average CAV travel speed of 32 km/h, average walking
speed of 5 km/h. A penalty factor of 𝑃% is used inside Equation 1 to
model the WYCA suggestion that any CAV route 𝑥 should ideally
be serviceable using at most 𝑛(𝑥) = 8 vehicles.

The optimisations were carried out using a standard genetic al-
gorithm (GA) and a basic estimation of distribution approach –
the population-based incremental learning (PBIL) algorithm
[1] . The two solvers were chosen as they are well-suited to as-
sessing the viability of nature-inspired optimisation on novel real-
world problems given their wide-application record, lightweight
implementation, and generally robust performance. For each solver
we evaluated 36 parameter combinations using 10 independent
runs and we experimented with biasing searches towards shorter
routes by sampling the initial populations from the distribution
𝑝𝑠𝑡𝑎𝑟𝑡 (𝑥) = Π120

𝑖=1𝑝𝑠𝑡𝑎𝑟𝑡 (𝑥𝑖 ), with 0.1 ≤ 𝑝𝑠𝑡𝑎𝑟𝑡 (𝑥𝑖 = 1) ≤ 0.5.

3 RESULTS AND CONCLUSIONS
We performed an initial series of test runs with the penalty param-
eter 𝑃 from Equation 1 set to 0% and the average number of CAVs
– i.e., 𝜇 (𝑛(𝑥)) – required by the end-of-the-run solutions / routes
was 19.6 for the GA and 16.9 for PBIL.When increasing the penalty
factor to 1% the average number of CAVs required to service the
360 end-of-the-run solutions shown in Figures 1c and 1d dropped
to 11.47 in the case of the GA and 8 in the case of PBIL. For 𝑃 = 1%,
average GA solution quality is 50 minutes and 58 seconds, while
the average PBIL solution quality is 50 minutes and 31 seconds (i.e.,
≈ 11% improvement over the baseline).

More importantly, for both evolutionary solvers, the best solu-
tions (illustrated in Figures 1a and 1b) require the usage of only
8 CAVs to deliver improvements of ≈ 13%. It is noteworthy that
both the best GA route and the best PBIL route have an intuitively
reasonable South-West↔ North-East orientation that aims to cor-
rect the poor North-East average commuting time of the baseline
by using the CAV service to link the North-East with Horsforth
Station along the shortest OSM path. The general ability of both
solvers to identify key (North-East) PT stops that must be serviced
by an optimal route is evidenced in Figures 1e and 1f by the fre-
quency of stop selection among all 360 end-of-the-run solutions.
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(a) GA best: 𝑓 (𝑥) = 49min (b) PBIL best: 𝑓 (𝑥) = 49min 20s

(c) GA: all routes (d) PBIL: all routes

(e) GA: stop frequencies (f) PBIL: stop frequencies

Figure 1: Information regarding all the 360GAandPBIL end-
of-the-run solutions when applying a penalty of 𝑃 = 1%.
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