

Wind Assisted Ship Propulsion "WASP"

Educational/ Teaching Material

WASP is co-funded by the Interreg North Sea Region Programme 2014-2020 Total budget € 5.393.222 - ERDF contribution € 2.613.458 Priority 2: Eco-innovation: Stimulating the green economy

https://northsearegion.eu/wasp

Deliverable data

Deliverable No.	2.B.
Deliverable Title	Development of educational and training materials
Work Package No: title	WP 4: Policy and viable business
Deliverable type	New services
Lead beneficiary	KLU
Responsible author	Lara Pomaska
Co-authors	WASP project consortium
Date of delivery	20-06-2023

Content

- WASP Project overview
- Work packages overview
- The business landscape for wind propulsion in shipping
- Characterizing WPT fuel savings in the maritime sector
- Digital twins
- Future considerations

WASP Project overview

Key objectives and project cycle

- Wind Propulsion Technology proven concepts lead to greening of NSR sea transport
- Identify the viable business cases for (hybrid) wind propulsion technologies
- Facilitate a level playing field for WPT with policy instruments

Project structure

ф.	WP1: Project Management	Work Package Leader: NMTF	an
	WP2: Communication Activities	Work Package Leader: IWSA	
			Scheep
¥	WP3: Engineering of Wind Propulsion Technologies	Work Package Leader: KUL	2 (e
	WP4: Policy & viable business	Work Package Leader: KLU	
	WP5: Operating of WPT and performance	Work Package Leader: SSPA	

Shipowners, their installations and technology providers

2 Flatrack Ventifoils (eConowind) Flettner Rotor (Norsepower)

Flettner Rotor (ECO Flettner)

Wing sail (eConowind)

Ships and installations

	Scheepvaartbedrijf van Dam	BOOMSMA		B	
Shipowner	Van Dam Shipping	Boomsma Shipping	Scandlines	Rörd Braren	Tharsis Sea-River Shipping
Country	The Netherlands	The Netherlands	Denmark	Germany	The Netherlands
Vessel	Ankie	Frisian Sea	Copenhagen	Annika Braren	Tharsis
Ship type	General cargo	General cargo	RoPax	Minibulker	General cargo
DWT	3,638 t	6,445 t	5,000 t	5,035 t	2,300 t
WPT	2 retrofit front- placed suction wings of 16 m	2 Flatrack suction wings of 11 m	Flettner rotor	Flettner rotor	2 flexible wing sails
WPT Provider	eConowind	eConowind	Norsepower	ECO Flettner	eConowind
WPT installation	March 2020	November 2020	September 2020	Q1 2021	Q1 2021
Trials planned	Q1 2021	Q1 2021	Q4 2020	2021	2021

WP4: Overcome business and regulatory barriers

Objectives

- Investigate the economic implications of WASP technologies
- Identify regulatory and business barriers and find strategies to overcome these
- Develop innovative financial solutions and provide business decision support for shipowners

Interreg

North Sea Region

European Regional Development Fund EUROPEAN UNION

NASP

WP3: Engineering of Wind **Propulsion Technologies**

Ship owners, their installations and (technology providers)

2 Flatrack Ventifoils

(eConowind)

(ECO Flettner)

Wing sail (eConowind)

Objectives

- WP3 will prepare ship owners for the installation and operation of WPTs
- Objectives •
 - Preparation of WASP participating vessels for operation with WPTs
 - Investigate the implications of using WPTs with simulation studies
 - Use the acquired knowledge to inform ship owners and maximize WPT potential
- WP3 is intended to present ship owners with a sufficient understanding of WPT operation and the possible savings that could be realized •

WP5: Operating of Wind Propulsion Technologies and performance

Objectives

• Demonstrate the usability of WPT on vessels

WASP

• Develop methods and third-party validated performance indicators for independent evaluation of WPTs in general and assessing the performance of a number of WPTs with these indicators

North Sea Region

European Regional Development Fund EUROPEAN UNION

- The real-life trials will be on existing shipping lanes with ships carrying freight; the only way to really measure cost, fuel and emission reductions
- By testing and assessing several WPTs in real life, on different vessel types and on various routes, knowledge and experience is expected to be gathered from the demonstrations as a base to understand under what conditions and in which circumstances WPT can be beneficial or non-beneficial
- These will provide credible data of WPT performances for new launching customers that will be included in decision support tools

Work Package Results

Demonstrate under what conditions WPT can be beneficial

The business landscape for wind propulsion in shipping

Overcome business and regulatory barriers

Economic implications of WASP technologies	Viable
Viable business case	Key investm
Socio-economic benefits	•Bunker saving agenda
	Incentivizati
Policy awareness	•Policy makers
	Risks
Strategies to overcome the barriers	•Technical, ope •Further explo
	Other consi
Innovative financing solutions	•Fast & effectiv •Communicatio
Potential WPT market uptake	Other impo
	•Crew

business case ent drivers •Brand value enhancement •Green on for WASP investments •Customers erational, financial risks vary according to technology ration is required derations e decision making process on between technical experts & top management rtant stakeholders •Classification societies Insurance companies

Barriers of WASP technology

North Sea Region WASP

Source: https://vb.northsearegion.eu/public/files/repository/20220111103132_WASPWP4.D5B_BarriersandovercomingstrategiesforacceleratingtheuptakeofWASP.pdf

Strategies to overcome barriers

Source: https://vb.northsearegion.eu/public/files/repository/20220111103132_WASPWP4.D5B_BarriersandovercomingstrategiesforacceleratingtheuptakeofWASP.pdf

Considerations for WASP

Operational factors affecting the performance of the WASP technology

Operational comparison between Rotors and Kites

	Kites	Flettner Rotors
Absolute Power	Stronger winds at higher altitude	Slower winds on lower altitudes
Volatility of Power	Most effective with wind aligning with navigation direction	Wider range of wind directions
Scalability	Less scalability compared with rotors	Power output increases linearly with number of installations
Wind direction	Most effective with tailwinds	Most effective with winds from side
Comptability with ship operation	Less deck space needed	Fundamental deck construction

Financial analysis

Net present value

Payback period

Business decision support

Accelerate the uptake of Wind Assisted Ship Propoulsion Technologies

Design a decision support tool for shipowners that are interested in WASP

Determine the best wind-assisted technology for each individual vessel of their fleet

How can shipowners be supported with their decision-making process?

Financial model inputs

Key technical data input

Interreg North Sea Region WASP European Regional Development Fund

Results

Sensitivity	y	adva	nce payment								
analysis	-		5%	10%	15%	20%	25%	30%	35%	40%	Any ratio
anarysis		0	7%	-8%	-19%	-28%	-35%	-40%	-45%	-49%	below 100%
		20	17%	1%	-12%	-21%	-29%	-35%	-40%	-45%	favors the
The		40	26%	9%	-4%	-15%	-23%	-30%	-35%	-40%	Tech.
percentage is		60	36%	17%	3%	-8%	-17%	-24%	-30%	-35%	Provider. The
the ratio of the		80	45%	25%	10%	-2%	-11%	-19%	-25%	-31%	closer to 100%
NPV of the	2 1	00	54%	33%	17%	5%	-5%	-14%	-21%	-26%	the more
owner over	a 1	20	63%	41%	24%	11%	0%	-8%	-16%	-22%	deal therefore
	0 1	40	72%	48%	31%	17%	6%	-3%	-11%	-17%	colored with
provider	ច 1	60	80%	56%	38%	23%	11%	2%	-6%	-13%	green

Sensitivity anal

the ratio o NPV of the owner ove the NPV o Technology provider

Characterizing WPT fuel savings in the maritime sector

With the "Sea Trial" methodology

WASP Sea Trial methodology

- Main objective is to confirm fuel savings
- Test methodology: Compare with and without WPT
- All tested devices can be turned off/on or be tilted

1.1 Speed trial m/v Copenhagen with Norsepower rotor

1.1 Speed trial m/v Copenhagen with Norsepower rotor

25

1.2 Speed trial Annika Braren *with EcoFlettner rotor*

1.3 Speed trial Frisian Sea with Econowind Ventifoils

WASP sea trial details

- 6-8 hours
- In-service
- Bf 5-7
- No additional

Instruments needed

2. Sea trial results

3. Sea trial results

✓ Confirm prediction results

Extrapolate to average saving on a route

4. Power saving potential (kW)

4. Power saving potential (kW)

Interreg North Sea Region

European Regional Development Fund EUROPEAN UNION

WASP

Sea trial results

Extrapolated results

Vessel	Power Saving Potential (kW)
Copenhagen	~ 375 kW
Annika Braren	~ 35 kW
Frisian Sea	~ 30 kW

- Comparing sea legs only
- Considering only propulsion power and power required by WPT
- Including sea margin (wave added resistance and service condition of hull.)

Utilizing the sea trial results

- The measurements are directly used as an input to verify the numerical models
- Determine the resistance curve of the ship (propulsive power needed to maintain a given speed)
- Extend the models additional insight into WPT operation and potential for fuel savings

Digital twins

Use cases with WASP technologies

Use case – Frisian Sea

Orange dots denote the hybrid mode (~15% of the total operational time from July 2021-July 2022)

Power savings at specific conditions

• The power savings assuming optimal control of the WPTs

Power saving w.r.t to ship bow

Wind speed w.r.t ship bow

Statistical analysis of savings

- We can also generate statistical representations of savings over a single route or in the long-term
- This shows the power savings by wind energy capture as a percent of total time (over the course of a year)

Performance over a specific route

This route features a 'step change' when the suction sails were activated

20

40

Time [hour]

60

Savings from wind energy capture

- Total fuel consumed with active WPTs = 4.08 ton
- ~245 kg fuel saved (~6% of total FC during WPT operation and 1.3% fuel saving from WPT for the whole route)
- The average WPT generated power is ~78 kW

Interreg

North Sea Region

European Regional Development Fund EUROPEAN UNION

Challenges due to uncertainties

- Assumptions regarding suction sail performance (i.e. value of C_L) – difficult to verify without force measurements (challenging to capture at industrial scale)
- Source of wind data (onboard anemometer versus wind database, e.g. Copernicus)

Sensitivity of fuel savings estimations to parameter variations

- Sensitivity to increasing various parameters by 5% from a reference condition (with WPT)
- FC savings due to WPT increases almost linearly with coefficient of lift (C_L), ship speed (V_s) and decreases with propulsion system efficiency (η_D)
- The most significant parameter on FC is the true wind speed

Anemometer measurements versus wind database

• We observed significant differences between sea trial anemometer measurements and online wind data for the same time

TWS [sea trial] [m/s]	TWS [CDS] [m/s]	TWS diff. [%]	TWA [sea trial] [°]	TWA [CDS] [°]	TWA diff. [%}
6.3	9.15	45.2	265.6	240	-9.6
7.7	9.53	23.8	255.3	236	-7.6
7.2	9.53	32.4	261.0	237	-9.2
9.8	9.34	-4.7	237.5	246.0	3.6
7.3	9.34	27.9	241.6	246.0	1.8
6.9	9.65	39.9	237.7	239.0	0.5
7.6	8.82	16.1	237.0	255.0	7.6
8.0	8.86	10.8	258.0	257.13	-0.3
7.8	8.86	13.6	247.4	257.0	3.9
7.8	7.34	-5.9	250.1	255.0	2.0
8.0	7.38	-7.8	263.5	258.0	-2.1
8.6	7.04	-18.1	257.5	258.0	0.2
9.7	7.04	-27.4	262.5	258.0	-1.7
9.3	7.39	-20.5	264.5	245	-7.4
9.3	7.39	-20.5	256.1	245	-4.3

• This has obvious implications for fuel savings calculations

Moving towards wide-scale uptake of WPTs

- One of the barriers is general lack of knowledge/measurements (little before WASP)...more is needed!
- Reluctance to test/adopt immature technologies
- Investment for specialized test rigs/technology demonstrators that avoid interrupting the operations of a commercial vessel?

Overcoming hurdles to WPT adoption

- WPTs need assistance to compete with conventional propulsion systems
- Impact from policy
 - EEDI or SEEMP more stringent measures could aid WPT uptake for new builds and existing vessels
 - Market based mechanisms (MBM) – essentially a carbon price
 - Emissions trading system (ETS)

Future considerations

- Candidate vessels with fixed route versus wide area of operation
- Choosing an 'optimal' route/weather routing
- Potential for integrated wind-hybrid propulsion system (main engine(s) output changing based on wind capture)

North Sea Region WASP

Thank you for your attention!

https://northsearegion.eu/wasp/

References

- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. *Trans. Res. Part D Trans. Environ*, 52, 408–421.
- Chou, T., Kosmas, V., Acciaro, M., & Renken, K. (2021). A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology. Sustainability, 13(4), 1880.
- DNV GL (2018). Decarbonization in shipping. Available at: https://www.dnvgl.com/maritime/insights/topics/decarbonization-in-shipping/index.html [Accessed 24 January 2021]
- Nelissen, D., Traut, M., Koehler, J., Mao, W., Faber, J., & Ahdour, S. (2016). Study on the analysis of market potentials and market barriers for wind propulsion technologies for ships. European Commission, DG Climate Action, CE Delft, Delft.
- Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: Transition management in public policy. *Foresight-The Journal of Future Studies, Strategic Thinking and Policy*, 3(1), 15–31.
- Smith, T.; Raucci, C.; Hosseinloo, S.H.; Rojon, I.; Calleya, J.; De La Fuente, S.; Wu, P.; Palmer, K. (2016). CO2 Emissions from International Shipping. Possible Reduction Targets and Their Associated Pathways; UMAS: London, UK.
- van der Kolk, N., Bordogna, G., Mason, J., Bonello, J., Vrijdag, A., Broderick, J., Larkin, A., Smith, T., Akkerman, I., Keuning, J., Huijsmans, R. (2019). Wind-Assist for Commercial Ships: A Techno-Economic Assessment. Available at: https://www.researchgate.net/publication/335542956_Wind-Assist_for_Commercial_Ships_A_Techno-Economic_Assessment [Accessed 22 January 2021]
- von Wirén, J. (2019). Norsepower Rotor Sails confirmed savings of 8.2 % fuel and associated CO2 in Maersk Pelican project. Available at: https://maersktankers.com/newsroom/norsepower-rotor-sails-confirmed-savings [Accessed 25 January 2021]